

Primo aggiornamento 2015 della DA 2014-2017 del 01/11/2015

Amministratore Delegato Giovanni Paolo Marati

Direttore gestione operativa Ing Roberto Cecchini

EMAS

GESTIONE AMBIENTALE VERIFICATA IT-001727

Amministratore Delegato Roberto Zocchi

> Direttore tecnico Massimo Aiello

EMAS

GESTIONE AMBIENTALE VERIFICATA IT-001728

Per qualunque informazione in merito alle prestazioni ed informazioni ambientali inserite nella presente dichiarazione ambientale rivolgersi al Responsabile del Sistema Integrato aziendale d.ssa Lisa Carboni inviando una mail a qas@acque.net.

EDIZIONE I

Rev	Descrizione	Data
0	Aggiornamento dei dati della DA 2014-2017 al 30.06.2015; aggiornati gli organigrammi aziendali e	01/11/2015
	la composizione del comitato Emas; aggiornata la Politica Integrata Infragruppo e gli obiettivi di	
	miglioramento.	

EDIZIONE 0

Rev	Descrizione	Data					
3	Revisione per recepimento osservazioni Comitato EMAS – Ministero dell'ambiente. Maggior	01/10/2015					
	dettaglio degli obiettivi energetici di Acque Industriali srl, corretto un refuso nel nome del AD di						
	Acque Industriali e modifica dell'unità di misura in alcune tabelle.						
2	Revisione per recepimento osservazioni a seguito di verifica del comitato tecnico RINA	12/01/2015					
1	Revisione per recepimento osservazioni a seguito di verifica di conformità da parte di ente terzo	28/11/2014					
0	Prima emissione	30/10/2014					

Sito di Pagnana via della Motta Empoli

Sommario

l.	PRI	REMESSA	4
2.	DES	ESCRIZIONE DELLE ORGANIZZAZIONI	4
	2.1.	Il gruppo Acque	4
	2.2.	La politica integrata di gruppo	5
	2.3.	Acque SpA	6
	2.4.	Acque Industriali srl	8
	2.5.	Il sito di Pagnana	8
3.	Inq	quadramento territoriale	11
4.	ILC	CICLO PRODUTTIVO	11
5.	PRI	ESTAZIONI AMBIENTALI	17
	5.1.	Aspetti ambientali diretti	17
	5.1.1	.1. Consumi di materie prime e ausiliarie	17
	5.1.2	.2. Consumi energetici	22
	5.1.3	.3. Consumi idrici	26
	5.1.4	.4. Emissioni in atmosfera	28
	5.1.5	.5. Scarichi idrici	31
	5.1.6	.6. Rifiuti	35
	5.1.7	.7. Rumore	37
	5.1.8	.8. Altri aspetti ambientali diretti	37
	5.2.	Significatività degli aspetti ambientali diretti	38
	5.3.	Aspetti ambientali indiretti	39
6.	IL S	SISTEMA DI GESTIONE AMBIENTALE DELLE ORGANIZZAZIONI	39
7.	I PR	ROGRAMMI AMBIENTALI DELLE ORGANIZZAZIONI	40
Q	GLO	OSSADIO	12

1. PREMESSA

Il presente documento rappresenta il primo aggiornamento della Dichiarazione Ambientale congiunta di Acque SpA e Acque Industriali srl per l'impianto di Empoli – località Pagnana, ai sensi del Regolamento EMAS (Reg CE 1221/2009). L'impianto di depurazione di Pagnana è in gestione ad Acque SpA, che gestisce i reflui urbani provenienti da vari comuni della zona empolese. Sullo stesso sito opera anche Acque industriali srl con propria piattaforma di trattamento dei rifiuti liquidi.

Tenuto conto della contiguità fisica delle due organizzazioni, dello stretto legame produttivo e dell'appartenenza allo stesso gruppo, si è deciso di elaborare una Dichiarazione Ambientale congiunta al fine di caratterizzare al meglio le performance ambientali delle due organizzazioni diverse operanti sul sito in questione.

Il gruppo Acque è stato da sempre orientato ai percorsi di implementazione di sistemi di gestione volontari che garantiscano prestazioni sostenibili ed alla data della stesura della presente Dichiarazione Ambientale risulta essere certificato dal RINA per i seguenti schemi:

- Sistema di Gestione della Qualità conforme alla norma UNI EN ISO 9001;
- Sistema di Gestione Ambientale conforme alla norma UNI EN ISO 14001:
- Sistema di Gestione della Sicurezza OHSAS 18001;
- Sistema di gestione per la Responsabilità sociale SA 8000;
- Sistema di gestione per l'Energia UNI EN ISO 50001 (solo per Acque SpA);
- Sistema di Gestione della Qualità conforme alla norma UNI CEI EN ISO/IEC 17025 per il laboratorio chimico acque reflue di Pontedera, chimico acque potabili di Empoli e microbiologici di Pisa e Empoli.

Il passaggio a EMAS, inizialmente avviato sul sito di Pagnana, rappresenta quindi una naturale evoluzione della vocazione e orientamento del gruppo verso i sistemi di gestione.

2. DESCRIZIONE DELLE ORGANIZZAZIONI

2.1. Il gruppo Acque

Il gruppo Acque è composto dalla capogruppo Acque SpA e da alcune società controllate e collegate nate nel corso degli anni con l'obbiettivo di assicurare una gestione ottimale di alcune attività di natura industriale non immediatamente riconducibili all'interno del ciclo idrico integrato o aventi particolare valore strategico. Si è creato così un sistema di imprese capace di assicurare efficienza e flessibilità della gestione, apportando nel contempo valore per la capogruppo. Si è limitato inoltre il ricorso alle esternalizzazioni salvaguardando un patrimonio di professionalità e competenze, che rappresenta una delle ricchezze principali del Gruppo. Ad oggi la struttura del gruppo risulta la seguente:

Società controllate da Acque SpA:

- ♣ Acque Industriali Srl (100%)
- ♣ Acque Servizi Srl (100%)
- ↓ LeSoluzioni S.c.a.r.l (59,55%)

Società collegate ad Acque SpA:

- ♣ Ingegnerie Toscane Srl (47,67%)
- Acquaser Srl (1,71%)
- **♣** Ti Forma S.c.a.r.l (8,17)

Per maggiori informazioni e/o dettagli sulle società sopra citate si rimanda al sito www.acque.net sezione "L'azienda – Gruppo Acque" o al Bilancio di Sostenibilità pubblicato dal gruppo. Per la compagine societaria si rimanda al sito aziendale al seguente link: www.acque.net/compagine-e-organi-societari.

2.2. La politica integrata di gruppo

POLITICA INTEGRATA DI GRUPPO del 01.09.2015

La Direzione di Acque SpA, Acque Industriali srl e Acque Servizi srl, ha deliberato di adottare una politica integrata e di gruppo, in modo tale da indirizzare in modo univoco la scelta delle strategie e delle attività conseguenti.

Acque SpA gestisce, su affidamento dell'Autorità Idrica Toscana e, attraverso le attività delle proprie controllate, il Servizio Idrico Integrato nel territorio del Basso Valdarno in Toscana. Per far fronte alle esigenze di organizzazione Acque S.p.A, Acque Industriali srl e Acque Servizi srl hanno adottato su tutto il territorio gestito i seguenti sistemi di gestione aziendali:

- Sistema di Gestione della Qualità operativo e conforme alla norma UNI EN ISO 9001;
- Sistema di Gestione Ambientale operativo e conforme alla norma UNI EN ISO 1400;
- Sistema di Gestione della Sicurezza OHSAS 18001;
- Sistema di gestione per la Responsabilità sociale SA 8000;
- Sistema di gestione per l'Energia ISO 50001;
- Sistema di Gestione della Qualità conforme alla norma UNI CEI EN ISO/IEC 17025 per i laboratori di Acque SpA.

I sistemi di gestione sono implementati dal gruppo in maniera integrata, è stato individuato un unico Responsabile del sistema integrato (RSI), all'interno della capogruppo che si occupa di supervisionare i sistemi di gestione adottati perseguendo l'obiettivo di integrarli e di gestire quindi un unico sistema integrato e infragruppo. Acque S.p.A. e le società del perimetro si impegnano, costantemente, per migliorare in modo continuo l'efficacia e l'efficienza delle attività e nel perseguimento della soddisfazione delle proprie parti interessate intese come tutti i soggetti portatori di interesse diretto o indiretto alle attività del gruppo: personale; clienti; azionisti; istituzioni; finanziatori; fornitori; ambiente; collettività. Acque SpA, e le società del perimetro, si pongono, al fine di mantenere e far crescere il sistema di gestione integrato, i seguenti obiettivi strategici:

- ricercare l'ottimizzazione dei processi aziendali al fine di raggiungere, attraverso il miglioramento continuo il massimo livello di efficienza ed efficacia, nel rispetto della salvaguardia ambientale, di una efficiente gestione energetica, della salute e sicurezza dei lavoratori, della qualità dei servizi e della sostenibilità delle attività svolte; andando così a fornire all'utenza un servizio di qualità, affidabile, sicuro, tempestivo, puntuale, flessibile e sostenibile;
- garantire la qualità dei servizi dei laboratori di prova attraverso una buona pratica professionale degli addetti e l'impiego di attrezzature tecnologicamente avanzate;
- sviluppare la propria capacità aziendale di rispondere e anticipare le esigenze ed aspettative degli utenti e di tutte le parti interessate, monitorando il loro grado di soddisfazione, gestendo i reclami e proponendo iniziative per la loro informazione e il loro coinvolgimento;
- far si che ogni dipendente operante all'interno dell'azienda, si senta, in relazione alle proprie mansioni, coinvolto in prima persona nella realizzazione della Politica Integrata;
- prevenire e/o ridurre gli impatti ambientali delle proprie attività; preservare le risorse naturali attraverso un attento e corretto prelievo idrico, un uso razionale ed efficiente dell'energia, diffondendo le best-practices in tema di efficientamento energetico ed una gestione efficiente ed efficace degli impianti e delle reti; prevenire l'inquinamento ed i rischi per la salute e la sicurezza dei lavoratori;
- attuare una gestione del serivizio idrico integrato implementando e garantendo i criteri di efficienza energetica anche in ambito progettuale ed in ambito di approvvigionamento;
- mantenere la conformità alle norme internazionali, europee, nazionali e locali, in riferimento alla qualità del servizio erogato, alla tutela del diritto del lavoro, alla tutela dell'ambiente, in materia energetica, a quelle relative all'igiene e alla sicurezza dei lavoratori e a quelle tecniche specifiche di ogni servizio fornito dalle aziende del gruppo;
- conformarsi a tutti i requisiti della norma SA8000 per la tutela dei lavoratori in particolare vietando espressamente il lavoro infantile, obbligato, il traffico di esseri umani e qualsiasi forma di discriminazione; attuando inoltre il rispetto delle leggi vigenti in materia di sicurezza e igiene del lavoro, il diritto di associazione e di contrattazione collettiva, rispettando le procedure disciplinari previste dal CCNL applicato e garantendo una remunerazione e un orario di lavoro che rispettino le vigenti normative.

Per raggiungere i suddetti obiettivi la Direzione di Acque SpA, e delle società del perimetro, ritiene indispensabili le seguenti azioni:

1. Dare un assetto gestionale all'azienda che garantisca una organica e chiara definizione dei compiti e delle responsabilità;

Implementare metodologie di lavoro tali da poter gestire in forma controllata le attività dell'azienda e ricercare ed applicare per quest'ultime le "migliori pratiche"

Gestire ogni processo sia interno che trasversale alle organizzazioni delle società del perimetro attraverso la metodologia del PDCA ovvero pianificare, eseguire, controllare e agire andando a standardizzare o riprogettare i processi per renderli efficaci ed efficienti;

- Utilizzare, per ogni singola organizzazione, tecnologie volte al miglioramento continuo della qualità dei servizi, della tutela ambientale e della sicurezza nonché adottare le migliori tecniche disponibili sul mercato per migliorare le performances energetiche a costi economicamente accettabili;
- Implementare a livello integrato metodi efficaci di comunicazione con le parti interessate, migliorando costantemente sia i mezzi di comunicazione, sia gli strumenti di intervento a fronte di richieste;

Comunicare la politica e gli obiettivi del sistema di gestione integrato agli stakeholder; 6.

- Comunicare le performance aziendali, attraverso l'emissione annuale del Bilancio di Sostenibilità, a tutti gli stakeholder favorendone il
- Formare e sensibilizzare tutto il personale e in particolare i responsabili aziendali nell'attuazione del Sistema di Gestione Integrato, in modo che le linee direttrici di questa politica e gli obiettivi concreti in materia di qualità, ambiente, energia e sicurezza siano compresi e recepiti da tutto il personale ai vari livelli;

Implementare efficaci metodologie di aggiornamento delle prescrizioni legali applicabili ad ogni singola organizzazione; Valutare periodicamente, per mezzo di audit interni, la conformità del Sistema di Gestione Integrato alle norme di riferimento, alla propria politica e a quanto pianificato e programmato; in particolare andando a verificare il raggiungimento degli obiettivi prefissati attraverso i riesami periodici della direzione;

Migliorare in modo continuo il Sistema di Gestione Integrato sulla base dei risultati dei riesami.

- Perseguire la continua innovazione tecnologica degli impianti di produzione al fine di aumentare la propria capacità produttiva e migliorare l'efficacia ed efficienza delle lavorazioni effettuate nel rispetto di tutti i principi di sicurezza e salute dei propri lavoratori, tutela ambientale, efficienza energetica e sostenibilità d'azione;
- Attuare il coinvolgimento di tutti i lavoratori nella vita aziendale attraverso l'introduzione di procedure e strumenti per favorire il dialogo e il miglioramento del clima aziendale;

Attuare il continuo miglioramento dei canali di comunicazione, informazione e coinvolgimento degli stakeholder;

Promuovere il coinvolgimento dei fornitori e attuare sistemi di sensibilizzazione/monitoraggio al fine di verificare il rispetto dei requisiti di sicurezza e salute dei lavoratori, energia, ambiente, qualità e responsabilità sociale.

Acque SpA, Acque Industriali srl e Acque Servizi srl attuano la suddetta Politica attraverso il sistema di gestione integrato che riesaminano almeno una volta all'anno definendo specifici obiettivi misurabili. La presente Politica è valutata regolarmente in sede di riesame della direzione al fine di verificarne l'efficacia e la continua idoneità.

> AD Acque SpA e Acque Servizi srl Ing. Giovanni Paolo Marati

AD Acque Industriali srl Ing. Roberto Zocchi/

2.3. Acque SpA

Acque SpA provvede alla gestione del servizio idrico integrato per il territorio toscano del Basso Valdarno dal 2002. Le attività di Acque SpA comprendono la captazione, il trattamento, l'accumulo, l'adduzione e la distribuzione di acqua potabile, le attività di gestione fognature, collettamento e depurazione delle acque reflue.

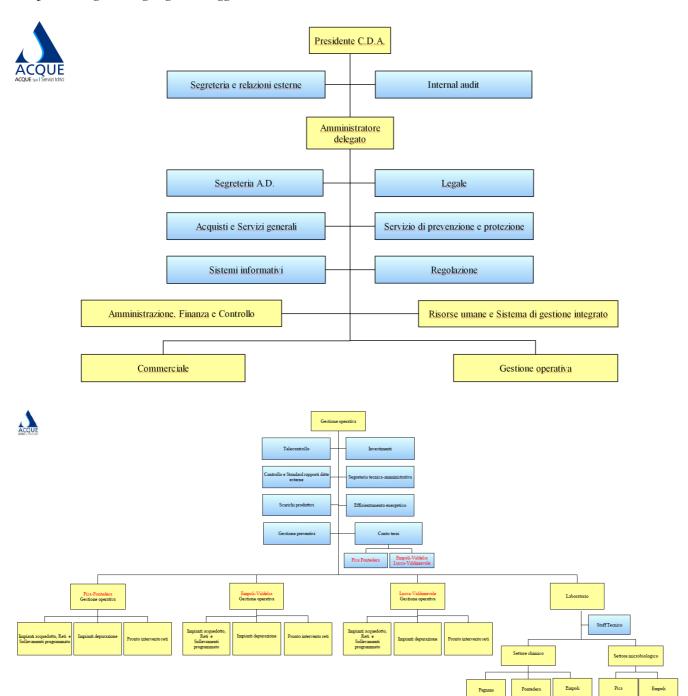
Comuni serviti depurazione e fognatura	57
Comuni serviti acquedotto	55
Popolazione servita dal servizio fognatura	668.247
Popolazione servita dal servizio depurazione	588.649
Popolazione servita dal servizio acquedotto	724.809
km di rete acquedotto	5.953
km di rete fognatura	3.064

Fonte: Bilancio di Sostenibilità 2014

Il servizio è reso nei 57 comuni appartenenti alle province di Firenze, Lucca, Pisa, Pistoia, e Siena, Acque SpA gestisce il servizio acquedotto solo su 55 comuni, sono infatti esclusi Montecatini e Ponte Buggianese, nei quali viene gestito solo il servizio di fognatura e depurazione. Inoltre, Acque SpA gestisce il servizio di fognatura anche in parte del Comune di Barberino Valdelsa che non fa parte del territorio della Conferenza Territoriale 2 Basso Valdarno (quindi in totale i comuni gestiti sono 58 e gli utenti serviti sono circa 340 mila).

Ragione Sociale	Acque S.p.A
To divisor	Sede amministrativa (via Archimede Bellatalla 1, 56121 Pisa)
Indirizzo	Sede legale (via Garigliano I, Empoli (FI))
Presidente	Sardu Giuseppe
Amministratore Delegato	Giovanni Paolo Marati
Sito internet	www.acque.net

Pag. 6 di 43

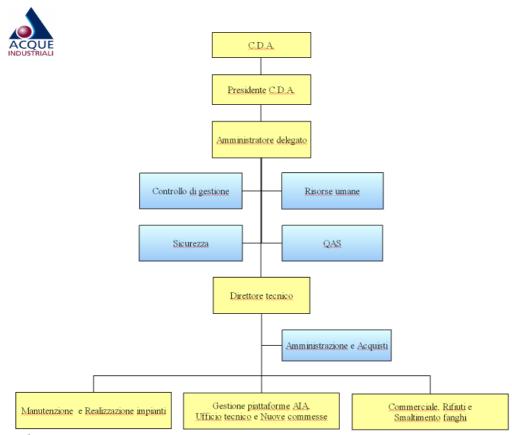

DICHIARAZIONE AMBIENTALE CONGIUNTA 2014-2017

AI SENSI DEL REGOLAMENTO EMAS III Sito di Pagnana via della Motta Empoli

Codice NACE	37.00
Iscrizione Rea	526378 (Firenze)

Si riporta di seguito l'organigramma aggiornato della società.

2.4. Acque Industriali srl


Acque Industriali srl ha sede legale in via Bellatalla 1 a Ospedaletto Pisa, e sede amministrativa ed operativa a Gello di Pontedera. La società è controllata al 100% da Acque SpA. Acque Industriali esercita la propria attività prevalentemente sul libero mercato a favore di imprese ed enti pubblici o privati, operanti sia in ambito regionale che nazionale, attraverso la realizzazione, il revamping ma soprattutto la gestione di impianti di trattamento rifiuti.

Sullo sviluppo delle sinergie per conto della capogruppo Acque SpA sono stati ampliati e mantenuti i servizi, garantendo un efficientamento del personale ed una sinergia sul controllo del processo depurativo come l'assistenza al processo e tutte le verifiche impiantistiche del depuratore biologico di Pagnana, con una supervisione generale di personale specializzato alla strumentazione in remoto presente.

Si riporta di la sintesi dei dati societari.

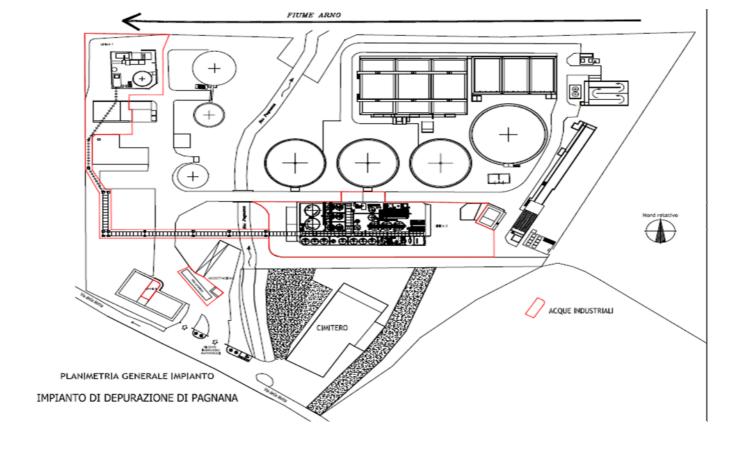
Ragione Sociale	Acque Industriali Srl			
Indirizzo	Sede legale (via Archimede Bellatalla 1, 56121 Pisa)			
	Sede amministrativa (via Molise 1, Gello di Pontedera (PI))			
Presidente	Rolando Pampaloni			
Amministratore Delegato	Alessandro Zocchi			
Sito internet	www.acqueindutriali.net			
Codice NACE	38.21			
Iscrizione Rea	141780 (Pisa)			

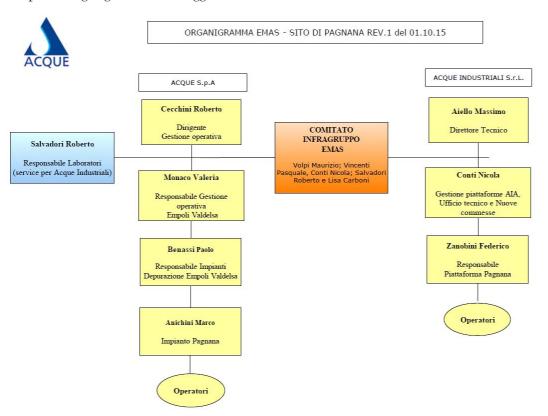
Si riporta di seguito l'organigramma aggiornato della società.

2.5. Il sito di Pagnana

L'impianto di Pagnana è situato a Empoli (Fi) – loc. Pagnana – via della Motta 370. Sono presenti nella stessa area recintata due organizzazioni che gestiscono reciprocamente la parte dell'impianto di depurazione (Acque spa) e la parte della piattaforma di gestione rifiuti (Acque industriali).

	Acque SpA	Acque Industriali Srl	
Numero addetti	n. 5	n. 6 (2 amministrativi, 4 operatori)	
Orario di lavoro	LUN-GIO 7.30-12.30/13.30-16.45 VEN 7.30-	Operatori: 7:30 – 16:45 lungiov. 7:30 – 13:00 ven	
	12.50	Impiegati: 8:00-17:10 lungiov 8:00 – 13:50 ven	


A rettifica di quanto indicato nella dichiarazione ambientale convalidata in data 29.12.2014 il numero degli addetti di Acque spa è indicato come 5 al posto dei 2 poichè sono stati conteggiati anche gli addetti che, pur non presidiando il sito per il totale del peridoo lavorativo, ne usufruiscono in termini di utilizzo spogliatoi, bagni e contribuiscono all'attività di gestione dell'impianto stesso .



Sito di Pagnana via della Motta Empoli

ACQUE

Si riporta l'Organigramma di sito aggiornato.

3. INQUADRAMENTO TERRITORIALE.

Per la descrizione dell'inquadramento territoriale dell'area, si rimanda alla Dichiarazione Ambientale convalidata in data 29.12.2014

4. IL CICLO PRODUTTIVO

Di seguito si riporta il numero dei parametri analizzati obbligatori e totali effettuati. Il numero dei campioni minimo viene determinato dal protocollo ARPAT e dal d.lgs 152/2006; dalla tabella seguente si evince che il numero minimo dei campioni in autocontrollo da comunicare è di 4 al mese (controlli delegati). I controlli interni di gestione sono comunque in numero maggiore, il doppio, al fin di garantire una gestione efficiente.

	2013	2014	Giugno 2015
Numero Campioni obbligatori	48	48	24
Numero Campioni effettuati	96	100	49

Tabella 1: parametri analizzati obbligatori e totali effettuati 2013-giugno 2015 (Acque SpA)

Di seguito si riportano i dati analitici dei reflui in ingresso all'impianto di depurazione per gli anni 2013, 2014 e 2015 (primo semestre).

		2013		2014		Gennaio - Giugno 2015	
Parametro	Unità di misura	Valore Medio	Numero determina zioni	Valore Medio	Numero determina zioni	Valore Medio	Numero determina zioni
Attività ione H+	рН	8.1	96	8	100	7,82	49

Pag. 11 di 43

AI SENSI DEL REGOLAMENTO EMAS III Sito di Pagnana via della Motta Empoli

		20	13	2014		Gennaio - Giugno 2015	
Parametro	Unità di misura	Valore Medio	Numero determina zioni	Valore Medio	Numero determina zioni	Valore Medio	Numero determina zioni
Conducibilità	mS/cm a 20 °C	2330	96	2146	100	2275	49
Solidi sospesi totali	mg/l	164	85	378	90	578,9	47
BOD	mg/l O2	79	86	82	76	158	46
COD	mg/l O2	293	80	394	96	653	48
Rapporto COD/ BOD		0.3		4.3		4,13	
Azoto organico	mg/l N	6.2	75	13.5	70	30,73	44
Ammonio	mg/l NH4	33.4	96	33.5	91	34,2	49
Nitriti	mg/l N	0.26	96	0.27	75	0,173	49
Nitrati	mg/l N	0.5	96	0.8	73	<0,5	47
Azoto inorganico	mg/l N	27.2	88	27.5	73	27,2	47
Azoto totale	mg/l N	31.9	84	40.3	89	57,5	44
Fosforo totale	mg/l P	5.3	84	12.9	90	23,7	47
Tensioattivi totali	mg/l	4	26	3.6	27	4,02	14
Cloruri	mg/l	355	96	334	90	334,8	49
Solfati	mg/l	166	96	169	89	115,9	49
Cadmio	mg/l	<0.002	51	<0.002	57	<0,002	23
Rame	mg/l	<0.02	51	<0.02	57	<0,01	23
Zinco	mg/l	0.07	51	0.09	57	0,243	23
Nichel	mg/l	0.02	51	0.02	57	<0,02	23
Ferro	mg/l	1.97	51	9.54	57	14,5	19
Piombo	mg/l	<0.02	51	0.03	57	0,039	23
Cromo esavalente	mg/l	<0.02	50	<0.02	57	<0,02	23
Oli e grassi		6	2	9	2	8	1
Idrocarburi		<1	2	<1	2	<1	1

Tabella 2: dati analitici reflui in ingresso all'impianto di Acque SpA origine dato 2013-2014-2015 dati derivanti da db laboratorio LIMS

Dall'esame dei dati correlati con gli effettivi carichi idraulici trattati dall'impianto, è possibile valutare, per ciascuno degli indici presi a riferimento, quanti Abitanti Equivalenti (AE) sono realmente allacciati all'impianto e quanto sia ancora il margine residuo che l'impianto può assorbire senza che si vengano a creare scompensi dei cicli depurativi. Nella tabella sottostante, il raffronto fra quanto trattato in termini di AE nel periodo 2012 – Giugno 2015, relativamente ai parametri: Q (Portata), BOD, COD, azoto totale. In particolare, dobbiamo sottolineare che il dato relativo agli AE calcolato sulla portata trattata, come appare evidente dall'alternanza dei dati medi annuali, risente pesantemente della piovosità e della conformazione della rete fognaria, che rammentiamo essere di tipo misto.

Parametro	Indice di riferimento	2012	2013	2014	Giugno 2015
Q -PORTATA ANNUA	m³/anno	5.961.171	7.080.326	6.884.805	3.261.513
GG PIOGGIA (fonte SIR toscana)	gg/anno	nd	101	102	31
AE - Q	200 l Ab.g	81.660	96.991	94.312	90.097
AE - BOD	60gr BOD ab.g	55.257	25.541	26.093	47.451
AE - COD	130gr COD ab.g	54.363	43.833	57.168	90.513

Pag. 12 di 43

Sito di Pagnana via della Motta Empoli

Parametro	Indice di riferimento	2012	2013	2014	Giugno 2015
AE – Azoto Totale	12gr TKN ab.g	64.375	51.567	63.333	86.343

Tabella 3: AE trattati dall'impianto di depurazione riferiti ai principali inquinanti presenti nei reflui nel periodo 2012-Giugno 2015

Utile sottolineare che tutto il 2013 e il 2014 sono stati caratterizzati da copiosi eventi meteorici che hanno incrementato notevolmente la portata in ingresso, con evidente aggravio dello squilibrio di nutrienti, cui l'azienda ha fatto fronte con aggiunta di fonti di carbonio esterno per rendere più funzionale il processo di denitrificazione e rispondere ai dettati autorizzativi. Da ciò emerge che una congrua valutazione di questo aspetto, può essere eseguita solo considerando un valore medio calcolato in un arco di tempo almeno triennale, da cui si desume un range di potenzialità impiantistica che va da 79.000 a 88.000 AE.

E' da specificare che il dato relativo agli AE calcolati sul COD a settembre 2015 risulta già essere rientrato sotto la potenzialità di progetto dell'impianto con un valore pari a 75.552 AE.

Di seguito sono valorizzati i risultati analitici medi dei cinque parametri più significativi degli inquinanti in ingresso. Tali parametri sono i parametri più critici. I seguenti parametri, oggetto di comunicazione ad ARPAT, sono eseguiti con metodi accreditati da ACCREDIA presso il laboratorio interno di Acque di Pontedera.

December	Concentrazio		Media	a Anno	
Parametro	ne (mg/l)	2012	2013	2014	Giugno 2015
BOD	mg/l O2	203	79	83	158
COD	mg/l O2	433	293	394	653
Azoto totale	mg/l N	47,3	31,9	40,30	57,5
Fosforo totale	mg/l P	8,4	5,3	12,90	23,7
Solidi Sospesi Totali	mg/l	202,6	164	378	578,9
Ammonio	mg/l NH4	43,6	33,4	33,50	34,2

Tabella 4: Valori medi dei principali parametri dei reflui in ingresso analizzati negli anni 2012 –Giugno 2015

Insediamenti produttivi

Nella fognatura afferente all'impianto di Pagnana confluiscono anche una serie di scarichi produttivi, provenienti dalle industrie della zona. I volumi di refluo di natura "produttiva" influenti sull'impianto nell'anno 2014 sono stati 654.291 m³, sostanzialmente stabile rispetto all'anno precedente. La tabella sottostante riporta i quantitativi di scarichi produttivi, suddivisi per territorio di provenienza per il 2014.

Comune	Quantitativi annui m³ 2013	Quantitativi annui m³ 2014
Empoli	502.315	498.249
Vinci	116.279	119.821
Montelupo Fiorentino	5.997	7.841
Cerreto Guidi	20.082	25.677
Montespertoli	1.699	2.487
Capraia e Limite	-	216
Totale	646.372	654.291

Tabella 5: Volumi provenienti da scarichi di insediamenti produttivi negli anni 2013 e 2014 – dati derivanti da dichiarazione dei titolari delle autorizzazioni allo scarico in pubblica fognatura cd. Produttivi.

La tabella di seguito riporta il numero delle utenze produttive allacciate all'impianto e i controlli che vengono effettuati sui loro scarichi per gli anni 2013 e 2014.

	201	3	2014		
Comune	Numero utenze produttive	Numero controlli	Numero utenze produttive	Numero controlli	
Empoli	43	48	43	46	
Vinci	13	29	13	27	
Montelupo Fiorentino	3	7	4	7	
Cerreto Guidi	9	15	9	19	
Montespertoli	1	3	2	2	
Capraia e Limite	0	0	1	0	
Totale	69	102	71	101	

Tabella 6: Utenze produttive e controlli effettuati 2013-2014 (Acque SpA)

In linea con i volumi trattati, gli insediamenti produttivi sono aumentati nel biennio considerato. Il comune in cui sono presenti le utenze maggiori è Empoli, seguito da Vinci. I controlli effettuati in totale sono rimasti sostanzialmente stabili.

Laboratorio chimico

All'interno del sito di Pagnana è presente un laboratorio di analisi gestito da Acque SpA, che si occupa prevalentemente delle analisi sulle matrici di Acque Industriali. Il laboratorio svolge la propria attività sulla base di una convenzione annuale gestita nei rapporti in house. Il laboratorio di Pagnana fa capo al laboratorio chimico principale di Pontedera che attualmente è ACCREDITATO secondo la norma ISO 17025. Il laboratorio chimico di Pontedera si occupa dell'analisi dei parametri in ingresso ed in uscita dal depuratore in termini di controlli delegati (da trasmettere all'ARPAT) e di controlli interni di gestione.

Ad oggi risultano accreditati secondo la norma ISO 17025 presso il LABORATORIO CHIMICO PONTEDERA i seguenti parametri:

DENOMINAZIONE PROVA	METODO
1 Solidi sospesi totali	APAT CNR IRSA 2090 B Man 29 2003
2 BOD ₅	APHA Standard Methods for the Examination of Water and Wastewater ed 22nd 2012 5210B
3 COD	ISO 15705:2002
4 Azoto totale	M.U. 2441:2012
5 Fosforo totale	M.U. 2252:2008
6 Determinazione di elementi chimici mediante spettroscopia di emissione con sorgente al plasma (ICP- OES): Alluminio; Arsenico; Cadmio; Cromo; Rame; Ferro; Manganese; Nichel; Piombo; Vanadio; Zinco	APAT CNR IRSA 3020 Man 29 2003

Tabella 7: Laboratorio chimico acque reflue di Pontedera - parametri accreditati

Di seguito si riporta un dettaglio dei rifiuti liquidi (NON PERICOLOSI) in ingresso all'impianto per il periodo considerato.

Denominazione rifiuto	Codice CER	2012 [t]	2013 [t]	2014 [t]	Gennaio-Giugno 2015 [t]
Fanghi e rifiuti di perforazione di pozzi per acque dolci	010504	18,04	-	44,99	,

DICHIARAZIONE AMBIENTALE CONGIUNTA 2014-2017

AI SENSI DEL REGOLAMENTO EMAS III Sito di Pagnana via della Motta Empoli

Denominazione rifiuto	Codice CER	2012 [t]	2013 [t]	2014 [t]	Gennaio-Giugno 2015 [t]
Fanghi da operazioni di lavaggio e pulizia	020201	310,29	219,98	199,53	194,62
Fanghi prodotti dal trattamento in loco degli effluenti	020204	5,06	37,75	9,23	
Fanghi prodotti da operazioni di lavaggio, pulizia, sbucciatura, centrifugazione e separazione di componenti	020301	23,02	5,82	-	18,48
Scarti inutilizzabili per il consumo o la trasformazione	020304	245,52	-	-	
Fanghi prodotti dal trattamento in loco degli effluenti	020305	-	12,05	12,29	
Scarti inutilizzabili per il consumo e la trasformazione	020501	-	55,42	87,26	-
Fanghi prodotti dal trattamento in loco degli effluenti	020502	-	36,86	-	-
Rifiuti prodotti dalle operazioni di lavaggio, pulizia e macinazione della materia prima	020701	-	,	22,85	
Fanghi prodotti dal trattamento in loco degli effluenti	020705	102,07	-	44,22	-
Fanghi prodotti dal trattamento in loco degli effluenti, diversi da quelli di cui alla voce 070611	070612	61,11	181,19	32,52	55,53
Sospensioni acquose contenenti pitture e vernici, diverse da quelle di cui alla voce 080119	080120	61,07	-	-	-
Rifiuti liquidi acquosi contenenti inchiostro	080308	377,45	615,80	242,72	22,84
Rifiuti liquidi acquosi contenenti adesivi e sigillanti, diversi da quelli di cui alla voce 08 04 15	080416	153,12	234,54	116,61	33,75
Soluzioni acquose di lavaggio, diverse da quelli di cui alla voce 11 01 11	110112	1.215,31	1.071,62	805,78	32,41
Rifiuti di sgrassaggio diversi da quelli di cui alla voce 11 01 13	110114	31,71	6,38	6,39	-
Sostanze chimiche di scarto diverse da quelle di cui alle voci 1605063, 160507 e 160508	160509	0,47	0,51	1,43	1,12
Soluzioni acquose di scarto	161002	11.116,57	14.500,17	21.803,60	3.865,16
Miscugli di rifiuti composti esclusivamente da rifiuti non pericolosi	190203	1.353,71	1.635,86	11.126,06	8.175,22
Fanghi prodotti da trattamento chimico-fisici	190206	4.840,63	438,470	-	
Percolato di discarica	190703	16.365,42	33.017,57	31.602,63	8.247,60
Fanghi prodotti dal trattamento delle acque reflue urbane	190805	3.559,60	1.625,87	670,04	672,04
Fanghi prodotti dal trattamento biologico delle acque reflue industriali	190812	188,27	178,13	267,71	190,75

DICHIARAZIONE AMBIENTALE CONGIUNTA 2014-2017

AI SENSI DEL REGOLAMENTO EMAS III Sito di Pagnana via della Motta Empoli

Denominazione rifiuto	Codice CER	2012 [t]	2013 [t]	2014 [t]	Gennaio-Giugno 2015 [t]
Fanghi prodotti dai processi di chiarificazione dell'acqua	190902	1.684,07	878,13	44,96	1.621,91
Rifiuti liquidi acquosi e concentrati acquosi prodotti dalle operazioni di risanamento delle acque di falda, diversi da quelli di cui alla voce19 13 07	191308	5.212,84	2.580,08	,	,
Fanghi delle fosse settiche	200304	15.387,90	17.500,55	16.940,11	7.991,51
Rifiuti della pulizia delle fognature	200306	1.371,05	603,18	314,13	136,25

Tabella 8: Rifiuti liquidi in ingresso all'impianto (Acque industriali)

Matrice aspetti ambientali di Acque SpA

Nessuna variazione rispetto alla Dichiarazione Ambientale convalidata in data 29.12.2014.

Laboratorio chimico in service

Il laboratorio di Pagnana si occupa del service delle analisi chimiche sulle matrici rifiuti, acque e fanghi per Acque Industriali al fine di monitorare e gestire correttamente la piattaforma in coerenza con le autorizzazioni e le prescrizioni legislative in vigore. I prelievi vengono effettuati da personale di Acque Industriali e consegnati al laboratorio. Il service è regolarizzato da un rapporto commerciale aggiornato annualmente.

Di seguito si riporta il numero dei Campioni e delle determinazioni effettuati dal laboratorio di Acque SpA per ITL dell'impianto di Pagnana.

2014						
	Numero campioni analizzati	Numero determinazioni				
Reattori	256	2804				
Stripper	164	1018				
Surnatanti	257	4069				
Prodotti piattaforma	49	257				
Solfato di Ammonio	15	165				
Linea I (vecchi ITL)	30	384				
Torre acida-basica	4	38				
Omologhe	1355	9307				
Totale annuo	2130	18042				

Tabella 9: Campioni e determinazioni per ITL Pagnana da laboratorio (Acque SpA) ultimo dato disponibile 31.12.2014

Matrice aspetti ambientali di Acque Industriali

Nessuna variazione rispetto alla Dichiarazione Ambientale convalidata in data 29.12.2014.

PRESTAZIONI AMBIENTALI

In questa sezione si riportano, per le due aziende localizzate sul sito di Pagnana, le prestazioni ambientali andando ad analizzare gli impatti diretti e indiretti che queste hanno sull'ambiente circostante.

Le organizzazioni devono considerare tutti gli aspetti delle proprie attività per decidere, sulla base di criteri definiti internamente, quali aspetti abbiano un impatto significativo così da poter stabilire i propri obiettivi e target ambientali per il miglioramento.

Per tale motivo vengono costruiti indicatori di prestazione ambientale utilizzando un comune denominatore.

Per Acque spa si utilizza come denominatore principale le tonnellate di BOD in ingresso all'impianto e per Acque Industriali le tonnellate dei rifiuti liquidi trattati.

In riferimento alle prestazioni energetiche sono stati aggiunti anche indicatori (kWh annui) con riferimento ai consumi ripresi dal bilancio energetico di Acque e dalle analisi energetiche di gruppo. A questo proposito è utile sottolineare che anche Acque Industriali ha intrapreso il percorso di certificazione 50001 che si concluderà a novembre 2015.

	2012	2013	2014	Giugno 2015
Tonnellate BOD in ingresso (t)	1280	556	564,55	519
Portata trattata in uscita (m³/anno)	5.961.171	7.080.326	6.884.805	3.261.513

Tabella 10: tonnellate BOD in ingresso e portata trattata in uscita (Acque SpA). dato dalla media di concentrazione di BOD riportato alla portata media

	2012	2013	2014	Giugno 2015
t rifiuti liquidi trattati	63.684,30	75.435,93	84.427,96	31.305,79

Tabella 11: rifiuti liquidi trattati dalla Piattaforma gestita da Acque industriali

5.1. Aspetti ambientali diretti

5.1.1. Consumi di materie prime e ausiliarie

Acque SpA

L'impianto di Acque SpA, si configura come "impianto a fanghi attivi a schema classico" con pre-denitrificazione. Questo fa si che, nella filiera di trattamento siano state inserite apposite sezioni per il dosaggio di prodotti chimici specifici, utili a coadiuvare la rimozione dei principali nutrienti. La tabella seguente mostra, in termini quantitativi, l'utilizzo dei prodotti chimici negli ultimi tre anni e mezzo. Come è possibile vedere i prodotti totali consumati hanno mostrato un aumento dal 2013 del 47.8%.

PRODOTTO	Frasi di Rischio /indicazioni di pericolo	2012 [t]	2013 [t]	2014[t]	Giugno 2015 [t]
Alluminato di sodio	H314	*	~	4	2,7
Bio 75 senza acetone Totale	Nessuna	85,95	150,00	216	~
Bioteck base L Totale	Nessuna	0,05	0,06	0,02	~
Miscela Hidrobac	Nessuna	~	-	46	15,3
Miscela Hidrobac C/GC	Nessuna	-	-	-	60,1
FeCl3 40% Totale	Nessuna	310,72	263,16	351	141
NaClO 14-15% Totale	Nessuna	1,10	-	-	-
NaClO 3%	H314, H400	-	-	~	0,49

Pag. 17 di 43

Sito di Pagnana via della Motta Empoli

PRODOTTO	Frasi di Rischio /indicazioni di pericolo	2012 [t]	2013 [t]	2014[t]	Giugno 2015 [t]
Polielettrolita Florein TF 675 RW Totale	Nessuna	3,50	_		
ACIDO ACETICO 80% Totale	Nessuna	0,15	_	0,075	
Hidrofloc pac 180 Totale	Nessuna	10,60	-	-	~
NaClO 14-15% Totale	R31, R34, R37, R50	1,10	-	-	-
NaOH Totale	Nessuna	2,40	-	-	
Polielettriolita Hidrofloc CL 91810 Totale	Nessuna	6,30	12,60	14,70	6,3
Polielettrolita CATFLOC C806 Totale	R36/38	1,05	-	-	-
BIOTEK CLAR Totale	Nessuna		0,50		
Polielettrolita CATFLOC C616 Totale	R36/38	-	1,05	-	-
TOTALE		422,91	427,37	631,84	225,73

Tabella 12: consumi prodotti chimici (Acque SpA)

Di seguito si riporta l'indicatore costruito sulle tonnellate di BOD in ingresso, inoltre sono stati costruiti due utili indicatori per il monitoraggio delle prestazioni dell'azienda, rapportando i prodotti chimici per il primo indicatore sulla portata trattata in ingresso e per il secondo indicatore sui kWh consumati nel processo produttivo. L'indicatore sulla portata trattata riporta un andamento in diminuzione (del 14% circa) dal 2012 al 2013, per poi tornare ad aumentare nel 2014 di circa il 50%. L'indicatore invece costruito sui consumi elettrici, nel triennio considerato ha fatto registrare un andamento crescente di circa il 79%.

	2012	2013	2014	Giugno 2015
Prodotti chimici/ BOD ingresso (t/t)	0,33	0,77	1,12	0,44
Prodotti chimici/ portata trattata (kg/m3)	0,07095	0,06036	0,09177	0,06926
Prodotti chimici/ kwh (kg/kWh)	0,1491	0,1722	0,2669	0,1957

Tabella 13: indicatori sui consumi di prodotti chimici (Acque SpA)

L'indicatore dei consumi di prodotti chimici sulle quantità di BOD trattato mostra un andamento crescente dal 2012 al 2014. Il consumo dei prodotti chimici flocculanti varia in base alla produzione di fanghi dell'impianto ottimizzandone in dosaggio in base alle prove che periodicamente vengono effettuate.

DICHIARAZIONE AMBIENTALE CONGIUNTA 2014-2017

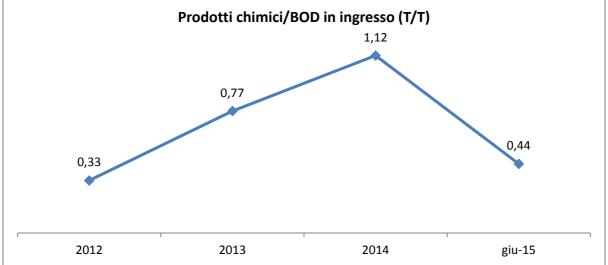


Grafico 1: Prodotti chimici consumati su BOD in ingresso (Acque SpA)

Reagenti di laboratorio

Prodotto	Frasi di rischio/ Indicazioni di pericolo	2012 (kg)	2013 (kg)	2014 (kg)	Giugno 2015(kg)
Acid glas C2	R36	nd	~	10	~
Acido acetico glaciale	R10;R35 / H226;H314	nd	1	1	~
Acido cloridrico 0,1 N	,	nd	15	22	10
Acido cloridrico 37%	R34;R37/H314;H335	nd	-	1	-
Acido nitrico 65%	R 8;R35 /H272	nd	-	1	-
Acido solforico 96%	R35 / H314	nd	-	1	-
Alluminio LCK 301	H226;H302;H312;H332;H370	nd	-	2 scatole	1 scatola
Arancio metile 0,1%	R25	nd	-	-	0,5
Argento nitrato 0,1 N	R52;R53	nd	1	1	-
blu di metilene 1%	R22	nd	-	-	1
Cianuri LCK 315	H334;H314;H412	nd	4 scatole	2 scatole	-
COD LCI 400	H290;H302:H311;H314;H332;H3 34;H340;H350;H373;H410	nd	1 scatole	10 scatole	-
COD LCI 500	H290;H311;H302;H332;H314;H3 73;H410	nd	-	7 scatole	-
COD LCK 014	H290;H311;H331;H302;H334;H3 14;H340;H350;H360FD;H373;H 410	nd	50 scatole	63 scatole	31 scatole
COD LCK 314	H290;H311;H302;H332;H314;H3 73;H410	nd	3 scatole	5 scatole	5 scatole
COD LCK 514	H290;H311;H331;H302;H334;H3 14;H340;H350;H360FD;H373;H 410	nd	10 scatole	9 scatole	9 scatole
COD LCK 914	H290;H302;H311;H314;H331;H3 34;H340;H350;H360FD;H373;H 410	nd	10 scatole	5 scatole	5 scatole
Cromo VI LCK 313	H290;H314	nd	2 scatole	1 scatole	1 scatola
Deterliquid C2	R35	nd	-	10	-

Pag. 19 di 43

AI SENSI DEL REGOLAMENTO EMAS III Sito di Pagnana via della Motta Empoli

fenolfateina 1 %	R11;R45;R62;R68/Flam.Liq.2;Ca rc.1A;Carc.1B;Muta.2;Repr.2;H2	nd	-	-	0,25
Gel di silice con indicatore	25;H350;H341;H361f	nd	-	3	_
Magnesio ossido leggero		nd	_	1	-
MBAS LCK 332	H302;H315;H351;H373	nd	_	2 scatole	-
Potassio cromato	H340; H350i; H411; H315; H319;	nd	0,25	2 Seatore	-
	H317				
Potassio ftalato	-	nd	-	0,5	-
Reattivo Ganimede N GCA200	*	nd	10 scatole	15 scatole	10 scatole
Reattivo Ganimede P GCA100	H315;H319	nd	6 scatole	19 scatole	13 scatole
Rosso di metile 0,2%	R10;H225	nd	0,25	-	0,25
Sale per addolcitore	-	nd	-	20	-
Sodio idrossido 0,1 N	H314;H319;H315	nd	10	18	4
Sodio tiosolfato 0,1 N		nd	1	2	-
Solfati LCK353	H319	nd	4 scatole	-	2 scatole
Solfiti LCW054		nd	-	1 scatole	-
Solfuri LCW053	H290;H314	nd	5 scatole	2 scatole	-
Soluzione pulizia GaniN GCR200	H314	nd	3 scatole	2 scatole	2 scatole
Soluzione pulizia GaniP GCR100	ione pulizia GaniP H314		5 scatole	4 scatole	5 scatole
Soluzione tampone pH 1,68	H315; H318	nd	-	0,5	-
Soluzione tampone pH 10	-	nd	-	0,5	-
Soluzione tampone pH 12,45		nd	-	1	
Soluzione tampone pH 4	-	nd	-	1	-
Soluzione tampone pH 7	-	nd	-	1	-
Standard ammonio 1000 mg/L	R22;R36 / H302;H319	nd	1,5	1	1
Standard arsenico 1000 mg/L	R22;R36;R38 / H350;H39;H315	nd	1	0,5	1
Standard boro 1000 mg/L	-	nd	1,5	1	1
Standard cadmio 1000 mg/L	R52;R36;R37;R38 / H319;H335;H315;H412	nd	-	0,5	-
Standard conducibilità 1413 micros/cm	-	nd	0,5	-	-
Standard conducibilità 12,88 ms/cm		nd	-	0,5	-
Standard cromo 1000 mg/L	R36;R37;R38 / H319;H335;H315	nd	-	1	-
Standard ferro 1000 mg/L	R36;R37;R38 / H319;H335;H315	nd	-	0,5	-
Standard Fluoruri 1000 mg/L	R25;R32;R36;R38 /H301;EUH032;H319;H315	nd	-	0,5	-
Standard fosfati 1000 mg/L		nd	0,5	1	1
Standard nichel 1000 mg/L	R8;R35;R22;R40;R42;R43	nd	-	1	-
Standard nitrati 1000 mg/L	R8	nd	1	1,5	0,5

Pag. **20** di **43**

Standard piombo 1000 mg/L	R36;R37;R38 / H319;H335;H315	nd	-	0,5	1
Standard rame 1000 mg/L	R36;R37;R38 / H319;H335;H315	nd	0,5	0,5	1
Standard fame 1000 mg/L	K30,K37,K36 / 11319,11333,11313	IIu	0,5	0,5	1
Standard zinco 1000 mg/L	R22;R34;R37;R50;R53	nd	0,5	0,5	-
Tensioattivi cationici LCK 331	H302;H315;H351;H373	nd	-	1 scatole	1 scatola
TNI LCK 333	H226;H351	nd	12 scatole	26 scatole	8 scatole

Tabella 14: consumi di prodotti chimici laboratorio (Acque SpA) utilizzati per le analisi di Acque Industriali

Acque Industriali srl

Le materie prime utilizzate nel processo depurativo si riconducono ai prodotti chimici utilizzati nelle due linee che prevedono trattamenti chimico-fisici dei rifiuti liquidi. La tabella seguente mostra i quantitativi di prodotti chimici utilizzati da Acque Industriali dal 2012 al giugno 2015.

PRODOTTO	Frasi di rischio	2012 [t]	2013 [t]	2014[t]	Giugno 2015 [t]
CALCE IDRATA	R14	95,51	82,35	92,71	54,10
CLORURO FERRICO	R34	104,43	109,71	137,67	124,08
POLIELETTROLITA CATIONICO	-	2,00	8,50	7,20	5,00
POLIELETTROLITA ANIONICO	-	-	0,20	0,50	0,20
SOLFURO DI SODIO	-	-	-	0,50	
ACIDO FOSFORICO	R34	27,17	37,36	41,64	17,57
ACIDO SOLFORICO	R35	408,29	433,95	376,56	161,32
SODA CAUSTICA	R35	339,96	607,47	418,87	248,02
ANTISCHIUMA		0,55	0,43	0,70	0,20
ACIDO NITRICO	R35	1,10	5,00	1,84	0,30
ACQUA OSSIGENATA	R5, R8, R20/22, R35	1,01	1,07	1,06	
SODIO SOLFURO A SCAGLIE	R22, R31, R34, R50	0,25	0,75	0,50	
TOTALE		980,27	1.286,79	1.079,75	610,79

Tabella 15: consumi prodotti chimici (Acque Industriali) fonte ufficio acquisti. Dato definitivo dell'arrivo DDT (non della fattura).

In generale, in termini quantitativi, le materie prime utilizzate hanno mostrato un andamento crescente fino al 2013; i dati del 2014, mostrano una diminuzione (del 16%) che si rispecchia anche nell'andamento dell'indicatore di performance ambientale, in linea con il valore del 2012. La tipologia di rifiuto in ingresso caratterizza la qualità e la quantità di materia prima utilizzata. Nel 2014, rispetto al 2013, si osserva, infatti, una diminuzione dei reagenti utilizzati per il trattamento dei percolati (ad esempio soda caustica), mentre si registra un maggior consumo di reagenti utili per il trattamenti chimicofisico (ad esempio calce idrata, cloruro ferrico ecc). Di seguito si riportano gli indicatori costruiti sui rifiuti liquidi trattati.

	2012	2013	2014	Giugno 2015
prodotti chimici (t)/ rifiuti liquidi trattati (t)	0,01539	0,01706	0,01279	0,01951

Tabella 16: indicatori sui consumi di prodotti chimici (Acque Industriali)

L'indicatore dei prodotti chimici utilizzati sui rifiuti liquidi trattati risulta in aumento dal 2012 al 2013 e in diminuzione nell'ultimo anno considerato, mostrando un andamento altalenante. E' importante considerare che i consumi di reagenti e prodotti chimici sono strettamente correlati alle caratteristiche del rifiuto liquido in ingresso da trattare, come sopra specificato. Nel 2014 gli ingressi, in base ad un accordo commerciale importante, sono stati di ingenti quantità ma di caratteristiche tali che non hanno necessitato di particolari quantitativi di reagenti. Nei primi 6 mesi del 2015 tale accordo è cessato ed è evidente la diminuzione dei quantitativi in ingresso ed il peggioramento delle caratteristiche qualitative dei rifiuti

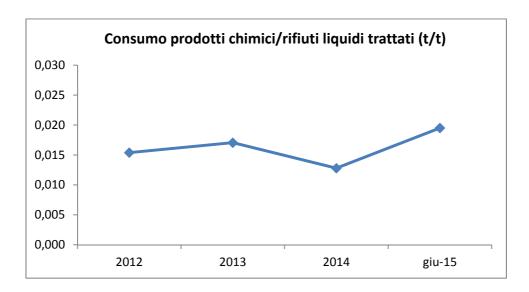


Grafico 2: consumo prodotti chimici/rifiuti liquidi trattati (Acque Industriali)

5.1.2. Consumi energetici

Acque SpA

Tra i consumi energetici si considera il consumo, in metri cubi, di Biogas utilizzato in fase di digestione anaerobica dei fanghi, riportati nella tabella seguente. Questa fase, come precedentemente descritto, ha il proprio rendimento ottimale ad una temperatura interna di circa 35 °C e pertanto il biogas prodotto viene utilizzato per alimentare una caldaia (di potenza termica nominale di 465 kW) che provvede al riscaldamento; il gas eccedente, o in caso di emergenza derivante da guasto del sistema di combustione del biogas, viene bruciato tramite una torcia appositamente concepita ed installata.

La produzione di biogas, come riportato di seguito, è in aumento dal 2012, e nell'ultimo biennio l'aumento è stato di circa il 21%. I consumi di metano si riconducono all'uso di una caldaia ad uso civile da 34,7 kW presente presso lo stabilimento, installata nel 1990, regolarmente manutenuta.

	2012	2013	2014	Giugno 2015
Produzione biogas (m³)	8.456	9.338	11.277	4.387

Tabella 17: Consumi biogas (Acque SpA)

Nell'edizione della Dichiarazione Ambientale convalidata in data 29/12/2014 sono stati riportati i consumi energetici, come da tabella di seguito, che però non si riferiscono solo ad Acque SpA, ma anche ad Acque Industriali, pertanto in questo aggiornamento della Dichiarazione Ambientale, sono stati riportati in maniera distinta i consumi delle due società (Tabella 19).

	2012	2013	2014	Giugno 2015
Consumi energia elettrica (KWh)	3.081.036	2.755.276	2.681.394	1.304.015

Tabella 18: Consumi energia elettrica (Acque SpA) dato POD totale (comprensivo di Acque Industriali).

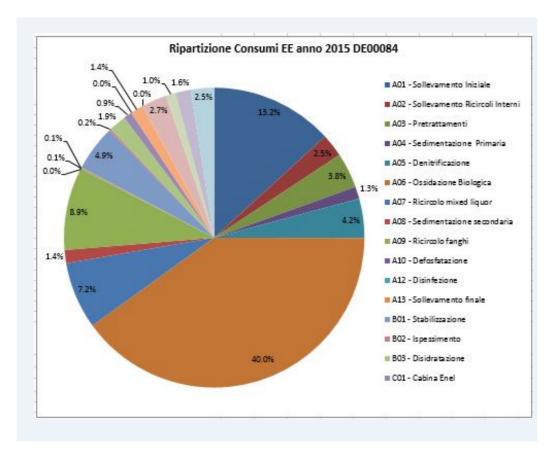


Grafico 3: ripartizione consumi energetici 2015 (Acque SpA)

La tabella di seguito riporta quindi i consumi di energia elettrica di Acque SpA per il periodo 2012- Giugno 2015. Questi sono risultati in diminuzione dal 2012 al 2014 di oltre il 16%. I dati del primo semestre del 2015 sono in linea con i consumi dell'anno precedente.

Inoltre sono riportati gli indicatori costruiti e monitorati per la certificazione ISO 50001 "Sistemi di gestione dell'energia", EPI (Energy Performance Indicator). In particolare EPI1 si riferisce ai consumi di tutto l'impianto, mentre EPI2 si riferisce ai consumi per la fase di ossidazione.

Entrambi gli indicatori hanno mostrato un andamento crescente dal 2012 al 2013 e in diminuzione per l'ultimo anno considerato.

	2012	2013	2014	Giugno 2015
Consumi energia elettrica (KWh)	2.836.646	2.481.328	2.366.811	1.154.535
EPI1 generale [kWh/(kgO2 + m3)]	1,126	1,227	1,103	0,836
EPI2 sull'ossidazione[kWh/(kgO2)]	0,492	0,544	0,478	0,316

Tabella 19: Consumi energia elettrica (Acque SpA) dato POD detratto dei consumi del contatore di Acque di conteggio dei dati Acque Industriali SM2 detratto dei consumi del contatore di Acque di conteggio dei dati Acque Industriali SM2

Per EPII la diminuzione registrata dal 2013 al 2014 è di oltre il 10%.

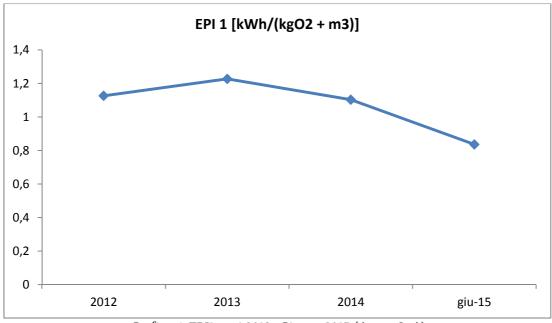


Grafico 4: EPII anni 2012- Giugno 2015 (Acque SpA)

EPI2 ha mostrato un aumento dell'11% circa dal 2012 al 2013 e una diminuzione di oltre l'11% nell'ultimo anno considerato.

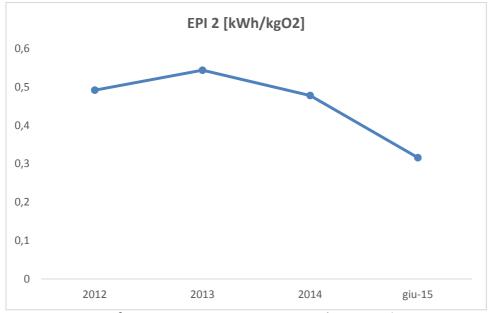


Grafico 5: EPI 2 anni 2012- Giugno 2015 (Acque SpA)

Di seguito si riportano i consumi di metano, che si riconducono all'utilizzo della caldaia ad uso civile, per tale motivo l'indicatore è stato elaborato sul numero stimato dei dipendenti di Acque SpA e Acque Industriali presenti sulla piattaforma. È importante sottolineare che la caldaia gestita da Acque SpA serve gli spogliatoi e tutti locali della palazzina che sono utilizzati da tutti gli addetti di Acque SpA che timbrano e non rimangono sull'Impianto, in quanto lavorano sul territorio e dai dipendenti di Acque Industriali presenti sull'impianto.

	2012	2013	2014	Giugno 2015
Metano (m³)	3.487	4.738	4.855	2.600

Sito di Pagnana via della Motta Empoli

Dipendenti (Acque e Acque Industriali)	5+7	5+7	5+6	5+6
m³/dipendenti	201	305	441	236

Tabella 20: Consumi metano uso civile (Acque SpA)

Per quanto riguarda i consumi di metano totali, questi risultano sostanzialmente stabili nell'ultimo biennio considerato, mentre l'indicatore risulta in aumento dal 2012.

La tabella seguente riporta i consumi energetici totali (metano ed energia elettrica) dell'impianto espressi in GJ e il relativo indicatore. Si può notare che i valori, per entrambi, sono rimasti sostanzialmente stabili nell'ultimo biennio. Considerando l'ultimo triennio, è possibile affermare che i consumi totali hanno mostrato un trend in diminuzione dal 2012 di oltre il 16%, mentre l'indicatore è risultato in aumento dal 2012 al 2013 per tornare a diminuire nel 2014 di circa il 7%.

	2012	2013	2014	Giugno 2015
Consumi totali energia (GJ)	10.212.045	8.932.943	8.520.686	4.156.415
GJ/ Kg BOD in ingresso	7.978	16.066	15.093	8.009

Tabella 21: Consumi energetici totali (Acque SpA)

Acque Industriali srl

I consumi energetici per Acque Industriali si riconducono ai consumi di energia elettrica e ai consumi di metano, questi ultimi necessari per alimentare la caldaia per scaldare l'acqua, che per mezzo di uno scambiatore di calore porta a temperatura il percolato destinato alla sezione di strippaggio e assorbimento dell'ammoniaca.

Di seguito si riportano i dati sui consumi di energia elettrica, di metano e i consumi totali (espressi in GJ), per il periodo 2012-giugno 2015.

	2012	2013	2014	Giugno 2015
Energia elettrica (KWh)	247.321	291.039	298.462	187.058
KWh/ t rifiuti liquidi trattati	3,88	3,86	3,54	5,98

Tabella 22: Consumi energia elettrica (Acque Industriali)

I consumi di energia elettrica risultano in leggero aumento dal 2013 di circa il 2,5%, ciò potrebbe essere correlato alla maggiore quantità di rifiuti liquidi conferiti da trattamento chimico-fisico, che quindi ha richiesto un utilizzo maggiore delle apparecchiature elettromeccaniche. L'indicatore costruito rispetto ai metri cubi di rifiuti liquidi trattati dall'impianto risulta in calo.

	2012	2013	2014	Giugno 2015 ¹
Metano (m ³)	36.407	57.223	59.462	23193
m³/ t rifiuti liquidi				
trattati	0,57	0,76	0,70	0,74

Tabella 23: Consumi metano (Acque Industriali)

I consumi di metano mostrano un andamento in aumento nel 2012 di circa il 63%, mentre nell'ultimo biennio considerato risultano sostanzialmente stabili. L'aumento dei consumi dal 2013 dipende dal fatto che il metano si utilizza solo nella fase di strippaggio e quando si verificano poche piogge, il conferimento di percolato risulta inferiore rispetto agli altri anni provocando continui arresti e ripartenze dei macchinari nella fase di strippaggio causando un consumo maggiore di metano necessario per portare in temperatura il percolato.

		2012	2013	2014	Giugno 2015
--	--	------	------	------	-------------

¹ I dati del primo semestre 2015 sono stimanti.

Sito di Pagnana via della Motta Empoli

Consumi energia (Gj)	totali	891.606	1.049.705	1.076.505	674.205
Gj/rifiuti trattati (t)	liquidi	14,00	13,92	12,75	21,54

Tabella 24: Consumi energetici totali (Acque Industriali)

Così come riportato anche nel grafico seguente l'indicatore dei consumi totali di energia costruito sui rifiuti liquidi trattati è diminuito, nell'ultimo biennio, di circa l'8%.

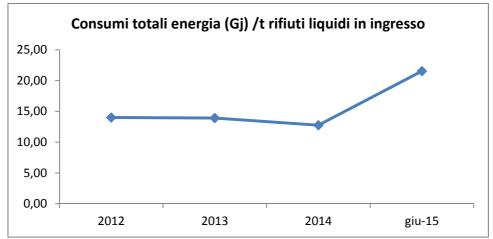


Grafico 6: consumi totali energia (Acque Industriali)

Tra i consumi energetici sono considerati trascurabili i consumi di gasolio per i mezzi aziendali in quanto, come meglio specificato nel paragrafo dedicato ai trasporti, Acque Industriali ha a disposizione sul sito 2 mezzi aziendali che vengono utilizzati di rado (mediamente vengono utilizzati per meno di 10.000 km all'anno).

5.1.3. Consumi idrici

Acque SpA

Acque SpA preleva acqua dall'acquedotto per uso civile, ovvero per i servizi igienici nella palazzina e per il laboratorio, inoltre nel sito sono presenti punti di prelievo dai quali è possibile utilizzare acqua da acquedotto civile.

Per la linea fanghi, come ad esempio per la pulizia dei teli della nastro pressa e per usi produttivi in generale, è invece utilizzata acqua di recupero dal depuratore. Di seguito si riportano i consumi idrici da acquedotto, da recupero e totali per Acque SpA.

	2012	2013	2014	Giugno 2015
Acquedotto (m³)	14.885	13.037	5.231	1.006
Recupero dall'impianto (m³) Riuso	32.283	22.617	19.425	12.825
TOTALE (m ³)	47.168	35.654	24.656	13.831
m³ da acquedotto /dipendenti	7.443	6.518	2.616	503
m³ da recupero/kg BOD in ingresso	25,22	40,68	34,41	24,71

Tabella 25: Consumi idrici (Acque SpA) comprensivi dei consumi di A. Industriali

	2012	2013	2014	Giugno 2015
Recupero dall'impianto (m³) Riuso	32.283	22.617	19.425	12.825

Tabella 26: Riutilizzo dato da stima di calcolo ore lavorate dalla nastro pressa*15m3/h (consumo medio orario della macchina)

I prelievi da acquedotto e il consumo di acqua da recupero hanno mostrato andamento analogo in diminuzione dal 2012 rispetto al 2014 (rispettivamente del 65% e 40%). I due indicatori sono costruiti uno rapportando i metri cubi di acque prelevata da acquedotto sul numero degli addetti alla piattaforma e l'altro rapportando i metri cubi di acqua di recupero ai Kg di BOD in ingresso. Il primo indicatore mostra un andamento decrescente nel periodo considerato. L'indicatore riferito all'utilizzo di acque di recupero sui kg di BOD in ingresso, invece, è in aumento fino al 2013 di circa il 60% per poi diminuire di circa il 16%, ciò dipende dalla quantità di fanghi trattati dall'impianto.

Acque Industriali srl

All'interno della piattaforma di trattamento rifiuti liquidi di Pagnana, si distinguono due reti di distribuzione dell'acqua: quella industriale (recupero dall'impianto biologico) e quella potabile. L'acqua industriale è utilizzata sull'impianto per la preparazione dei reagenti, per il sistema di lavaggio della sezione di grigliatura, per il lavaggio in pressione delle tele filtranti della sezione di disidratazione fanghi oltre che per il lavaggio di attrezzature e piazzali. Per quanto riguarda invece l'acqua potabile, il suo utilizzo è previsto solo per l'alimentazione delle docce di emergenza e del sistema di flussaggio delle tenute delle pompe di caricamento dei rifiuti e dei reagenti.

	2012 (m³)	2013 (m³)	2014 (m³)	Giugno 2015 (m³)
Acque di riuso - dato da contatore linea l	5.306	1.491	1.951	801
Acque di riuso – dato da contatore linea 2	5.551	9.049	8.827	3.825
Totale acqua di riuso	10.857	10.540	10.778	4.626
Acqua potabile ad uso di processo - dato da contatore ad hoc	169	377	271	224
Consumi idrici totali (m³)	11.026	10.917	11.049	4.850

Tabella 27: Consumi idrici (Acque Industriali)

Per il triennio considerato il consumo idrico industriale risulta pressoché invariato. Il maggior consumo di acqua potabile per il 2013 è collegato al maggior conferimento dei rifiuti liquidi e quindi alla necessità maggiore di flussaggio delle tenute delle pompe di caricamento dei rifiuti e dei reagenti. Nel 2014 il consumo è diminuito del 28%.

Consumi idrici totali (m³)/-t rifiuti liquidi trattati	0,17	0,14	0,13	0,15
T 1 11 22 C (111 1 / 1 T 1	(1()		-	

Tabella 28: Consumi idrici (Acque Industriali)

La tabella e il grafico di seguito mostrano l'incidenza dell'acqua di riuso sui consumi idrici totali, come è possibile vedere il riuso incide in maniera molto elevata con percentuali al di sopra del 95 in tutti gli anni considerati.

	2012 (m³)	2013 (m³)	2014 (m³)	Giugno 2015 (m³)
Totale acqua di riuso (m³)	10.857	10.540	10.778	4.626
Consumi idrici totali (m³)	11.026	10.917	11.049	4.850
Totale acqua di riuso/ Consumi idrici totali (m³)	98,47%	96,55%	97,55%	95,38%

Tabella 29: Consumi idrici (Acque Industriali)

Il grafico riporta il dettaglio della composizione dei consumi idrici totali per il 2014, l'acqua di riuso ammonta al 97,55% dei consumi totali.

Sito di Pagnana via della Motta Empoli

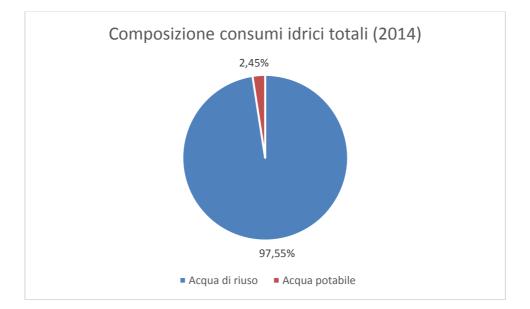


Grafico 7: Composizione consumi idrici totali - 2014 (Acque Industriali)

5.1.4. Emissioni in atmosfera

Acque SpA

Emissioni puntuali.

L'azienda è in possesso di Autorizzazione Unica Ambientale (AUA), emessa dall'Unione dei Comuni della Valdelsa (Determinazione Dirigenziale 942 del 14/10/2014), che autorizza le emissioni dello stabilimento.

Esse sono originate da:

El: un'aspirazione convogliata sui locali della nastropressa della linea di trattamento fanghi.

E2:torcia per biogas di emergenza (di potenza termica nominale di 558 kW)

Per il primo punto sono prescritte analisi annuali di monitoraggio (vedi tabella sotto). Per il secondo punto non sono prescritte analisi ma solo norme tecniche di utilizzo che sono evidenziate nel registro di controllo dei DPC – piano delle emergenze.

Sul punto di emissione (E1) della nastropressa l'azienda deve effettuare annualmente analisi degli inquinanti H_2S , NH_3 , COT e SOV. La tabella seguente mostra i risultati delle ultime analisi (avvenute in data 19/03/2015), sul punto di emissione autorizzato, sui parametri indicati dall'autorizzazione e i limiti da rispettare. Come è possibile notare tutti gli inquinanti monitorati rispettano ampiamente i limiti imposti dalla normativa.

Inquinante	Media dei rilievi (mg/Nm³)	Valore limite (mg/Nm³)
H_2S	0,08	5
NH_3	0,3	30
COT	19,5	50
SOV	2,0	20

Tabella 30: risultati analisi emissioni in atmosfera 2015 punto El(Acque SpA)

La tabella seguente mostra l'indicatore sulle emissioni annuali in atmosfera dei parametri monitorati convertiti in flusso di massa rispetto alle tonnellate di BOD in ingresso all'impianto per il 2015.

massa rispecto une comienace di Bob in ingresso un impiante	per ir 2013.
Inquinante	Kg inquinante/t BOD in ingresso
H_2S	0,003
NH_3	0,012
COT	0,807
SOV	0,083

Tabella 31: Indicatori inquinanti emissioni in atmosfera 2015 (Acque SpA)

Emissioni diffuse

Seguendo gli adempimenti previsti dall'AUA di adozione di modalità gestionali per la loro limitazione, sia in merito alla occasionale movimentazione dei fanghi all'interno dell'impianto e al loro allontanamento su mezzi idonei sia in merito alla

manutenzione delle apparecchiature e delle vasche Acque SpA ha provveduto a adottare sui cassoni dei rifiuti delle coperture mobili, in modo tale da poterli chiudere appena tecnicamente possibile.

Durante le attività di manutenzione delle apparecchiature e delle vasche l'azienda provvederà a lavare idoneamente le suddette, garantendo nel contempo anche la pulizia delle aree limitrofe.

All'interno del depuratore, sotto la gestione di Acque SpA, sono presenti 2 caldaie, una ad uso industriale alimentata a Biogas, installata nel 1989, di potenza 465 kW, e una caldaia ad uso civile, alimentata a metano, installata nel 1990 di potenza 34,7 kW.

Esse sono sottoposte a regolare manutenzione come prescritto dalla normativa vigente.

Caldaia Tipo	Matricola	Alimentazione	Anno Installazione	Potenza Kw
Caldaia civile - Pensotti T27	n.c	Metano	1990	34,7
Caldaia industriale - Seveso STQ 400N	14D1402	Biogas	1989	465

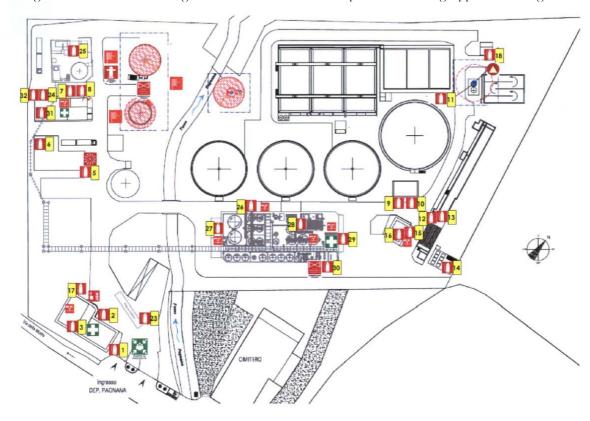
La tabella seguente elenca i condizionatori presenti sull'impianto, la localizzazione, il modello, l'anno di installazione, la tipologia e quantità di gas contenuto.

cod	Localizzazione	Marca	Modello	Anno istallazione	Gas	Kg Gas	Ton CO2 equivale nti
1	Ufficio	LG	MOD. S09AC	2006	R410 A	0,58	1,21
2	Ufficio centrale	LG	MOD. S09AC	2006	R410 A	0,58	1,21
3	spogliatoio	LG	MOD. S09AC	2006	R410 A	0,58	1,21
4	Sala QE	General Fujitsu	mod. AOYG12LLC	2013	R410 A	0,75	1,56
5	Sala QE	General Fujitsu	mod. AOYG12LLC	2013	R410 A	0,75	1,56
6	Loc Laboratorio	Hitachi	RAM53QHS trialsplit 12+9+9	n.c.	R410 A	1,65	3,45
7	Loc Laboratorio	Hitachi	RAM53QHS trialsplit 12+9+9	n.c.	R410 A	1,65	3,45
8	Uffici P.T.	Hitachi	RAM53QHS trialsplit 12+9+9	n.c.	R410 A	1,65	3,45
9	Sala QE Linea Fanghi	Mitsubishi	MUZ-HJ35VA	2015	R410 A	0,72	1,50

Tabella 32: condizionatori presenti sull'impianto (Acque SpA)

Nel 2015 è stato installato un condizionatore contenente 0,72 kg di gas R410A cod. n. 9.

Date le loro caratteristiche ed il quantitativo di gas refrigerante presente al loro interno, gli impianti di condizionamento presenti sul sito non devono essere sottoposti al periodico controllo delle fughe. Vale la pena ricordare, poi, che da giugno 2014 è in vigore il nuovo regolamento CE n.517/2014, che ha abrogato il Regolamento CE 842/2006. Il nuovo Regolamento prescrive un controllo periodico delle fughe non più basato sul quantitativo di gas refrigerante presente nell'impianto ma sulla soglia di tonnellate di CO2 equivalente di emissione. Fino al 31/12/2016 per il controllo delle fughe e la dichiarazione FGAS sarà ancora valida la soglia dei 3 kg di gas, comunque dai calcoli fatti sui condizionatori di sopra elencati presenti sul sito, nessuno sarà sottoposto a controllo delle fughe secondo il nuovo regolamento poiché non si raggiunge il limite previsto dei 5,00 tCO2 equivalenti.



Pag. 29 di 43

Non sono presenti in stabilimento estintori contenenti halons. Gli estintori presenti sono tutti a CO_2 e a polvere. Tali estintori vengono mantenuti una volta ogni 6 mesi e sono indicati nella planimetria infragruppo delle emergenze.

Acque Industriali srl

Le sezioni impiantistiche interessate dal trattamento aria sono la grigliatura iniziale, il deposito del vaglio, la vasca di omogeneizzazione/condizionamento, l'ispessitore ed il locale di disidratazione per la Linea 1, i serbatoi di stoccaggio iniziale ed intermedio, i reattori chimico-fisici a batch e la vasca di alcalinizzazione per la Linea 2 (collegata con l'impianto aria per mezzo del pipe rack).

L'impianto di trattamento fumi ha una potenzialità di 3.000 Nmc/h ed è costituito da due torri di abbattimento fumi una a lavaggio acido e l'altra a lavaggio basico (scrubber).

Nella torre a lavaggio acido, dove prevalentemente viene abbattuta l'ammoniaca, l'aria è messa a contatto in controcorrente ad una soluzione di acqua acidulata mentre nella torre a lavaggio basico, dove prevalentemente viene abbattuto l'acido solfidrico, l'aria viene messa a contatto in controcorrente ad una soluzione di acqua basificata in ambiente ossidante. In seguito alle due torri è stato installato un filtro a carbone attivo granulare realizzato in polipropilene, preceduto da un idoneo gruppo refrigerante per l'abbattimento dell'umidità presente nell'aria. L'aria viene infine convogliata in atmosfera dal camino di uscita posto a valle del filtro a carbone.

Acque Industriali deve rispettare le prescrizioni presenti nell'AIA n.40/2008 del 04/11/2008, il 4 Novembre 2014 è iniziato il procedimento di revisione e rinnovo dell'AIA. In particolare l'articolo 29 octies, comma 11 "Fino alla pronuncia dell'Autorità competente in merito al riesame, il gestore continua l'attività sulla base dell'autorizzazione in suo possesso". Nell'AIA si individua un punto di emissione, sul quale vanno effettuate analisi con cadenza annuale:

• El: aspirazioni derivanti dalla linea l (grigliatura-compattatore-vaglio, condizionamento, ispessitore fanghi e locale di disidratazione meccanica fanghi e linea 2: serbatoi di stoccaggio iniziale e intermedio e reattori)

Pag. 30 di 43

La tabella seguente riporta i risultati delle ultime analisi disponibili per questo punto emissivo effettuati il 26/06/2015, per gli inquinanti soggetti a campionamenti ovvero H_2S e NH_3 . Come è possibile vedere i limiti sono stati ampiamente rispettati, per entrambi gli inquinanti.

Inquinante	Media dei rilievi (mg/Nm³)	Valore limite (mg/Nm³)
H_2S	<0,18	5
NH_3	0,16	30

Tabella 33: risultati analisi 2015 (Acque Industriali)

Di seguito si riportano gli indicatori costruiti sui metri cubi di rifiuti liquidi trattati per l'anno 2014.

Er organic or inference Str more destruir con mont confirment inference per runnic zer					
Inquinante	Kg inquinante/m³ rifiuti liquidi trattati				
H_2S	0,000025				
	mg inquinante/m³				
NH_3	0,000355				
	mg inquinante/m³				

Tabella 34: Indicatori inquinanti emissioni in atmosfera 2015 (Acque Industriali)

5.1.5. Scarichi idrici

Acque SpA

Si tratta degli scarichi delle acque reflue urbane provenienti dall'impianto di depurazione recapitanti nel corpo recettore Fiume Arno e delle acque reflue provenienti dai bay-pass a servizio dell'impianto di depurazione e dagli scaricatori di piena presenti sul sistema fognario autorizzati dalla già citata Autorizzazione Unica Ambientale.

Di seguito si riportano il riepilogo dei risultati delle analisi degli scarichi del 2014.

Parametro	Unità di misura	Valore Medio	Numero determinazioni
Attività ione H+	рН	7,9	100
Conducibilità	mS/cm a 20°C	1839	100
Solidi sospesi totali	mg/l	9	90
BOD	mg/l	3,0	79
COD	mg/l O2	39	96
BOD/COD	mg/l O2	0,07	-
Azoto organico	mg/l N	2,3	72
Ammonio	mg/l N	1,3	91
Nitriti	mg/l NH4	0,08	91
Nitrati	mg/l N	7,7	75
Azoto inorganico	mg/l N	8,7	75
Azoto totale	mg/l N	11,3	89
Fosforo totale	mg/l N	0,8	90
Tensioattivi totali	mg/l TNI	0,2	27
Cloruri	mg/l	312	91
Solfati	mg/l	125	91
Cadmio	mg/l	0,001	57
Rame	mg/l	0,01	57
Zinco	mg/l	0,02	57
Nichel	mg/l	0,01	57
Ferro	mg/l	0,24	57
Piombo	mg/l	0,01	57
Cromo esavalente	mg/l	0,01	57

Tabella 35: Risultati analitici dei reflui in uscita dal depuratore di Pagnana nell'anno 2014

Per i principali inquinanti monitorati sugli scarichi idrici di Acque SpA, ovvero COD, BOD, SST, vengono riportati gli andamenti degli indicatori costruiti sugli inquinanti in ingresso, che rappresentano l'efficienza di abbattimento dell'impianto.

Sito di Pagnana via della Motta Empoli

	2012	2013	2014	Giugno 2015 ²
BOD in uscita / BOD in ingresso	0,96%	0,95%	0,96%	0,98%
COD in uscita / COD in ingresso	0,91%	0,88%	0,90%	0,95%
SST in uscita / SST in uscita	0,95%	0,95%	0,98%	0,99%
Azoto totale in ingresso / Azoto totale in uscita	0,73%	0,68%	0,73%	0,79%
Fosforo in ingresso / Fosforo	0,85%	0,79%	0,93%	0,97%

Tabella 36: efficienza di abbattimento impianto (Acque SpA) - dato medio di tutti i controlli (delegati + gestionali)

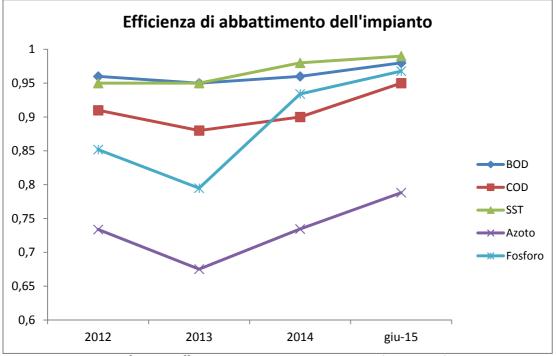


Grafico 8: % efficienza impianto 2012-giugno 2015 (Acque SpA)

Tutti gli indicatori che rappresentano l'efficienza di abbattimento dell'impianto mostrano un andamento crescente dal 2013 al 2014. Di seguito si riportano i dati in termini di portata, tonnellate di COD, BOD e SST trattati dall'impianto negli anni 2012- giugno 2015, ovvero la capacità dell'impianto di abbattere gli inquinanti presenti negli scarichi.

	Anno	Portata³ <i>m³/anno</i>	SST in [t/anno]	BOD in [t/anno]	COD in [t/anno]	AZOTO [t/anno]	FOSFORO [t/anno]
Ingresso	2012	5.961.171	1.367	1.208	2.580	293	54
Uscita	2012	5.961.171	79	47	236	78	8
Ingresso	2013	7.080.326	1.159	556	2.076	234	39
Uscita	2013	7.080.326	60	29	242	76	8
Ingresso	2014	6.884.805	2.602	571	2.713	290	91

² I dati per su fosforo e azoto del 2015 sono riferiti ad Agosto, in quanto i monitoraggi vengono effettuati per quadrimestri.

Pag. 32 di 43

³ La portata in ingresso è indicata al netto dei ricircoli di processo e quindi uguale a quella in uscita.

Sito di Pagnana via della Motta Empoli

	Anno	Portata³ <i>m³/anno</i>	SST in [t/anno]	BOD in [t/anno]	COD in [t/anno]	AZOTO [t/anno]	FOSFORO [t/anno]
Uscita	2014	6.884.805	62	269	21	77	6
Ingresso	Giugno 2015	3.261.513	1.888	518	2.132	286	93
Uscita	Giugno 2015	3.261.513	21	100	8	50	3

Tabella 37: rendimento dell'impianto (Acque SpA) 2012- giugno 2015

Secondo la Delibera della Giunta Regionale 1210/2012, Acque SpA sulla piattaforma di Pagnana, come impianto di depurazione di acque reflue urbane, è tenuto ad effettuare la periodica verifica della capacità di rimozione di azoto e fosforo totale dagli stessi, al fine di assicurare i livelli di rimozione di competenza necessari a garantire il mantenimento della rimozione minima, a livello dell'intero bacino drenante nell'area sensibile, di almeno del 75 % di azoto e fosforo totale sufficiente. La delibera inoltre stabilisce che è ammessa una variazione del 5% in negativo per i singoli impianti in relazione alle necessità gestionali sempre che il complesso degli scarichi di uno stesso gestore garantisca complessivamente la rimozione per esso prevista.

Acque Industriali srl

Il punto di emissione in acqua che recapita in pubblica fognatura che confluisce nel depuratore gestito da Acque SpA, così come riportato nell'AIA n.40/2008, è situato nei pressi del locale tecnico e del sistema di finissaggio nell'area dell'ampliamento della piattaforma. Le acque reflue derivanti dal trattamento vengono scaricate nel pozzetto di ispezione e controllo finale, previo passaggio attraverso il misuratore di portata elettromagnetico.

Punto di controllo	Finalità d	lel	Parametri	Modalità di	Frequenza
	controllo			campionamento	
Pozzetto finale (acque	Qualità e	ed	pH, COD, SST, metalli,	Medio composito	Una volta al giorno
reflue scaricate)	efficienza d	lel	NH4, Ntot, Test di	su 24 ore con	
	processo		tossicità, conducibilità	autocampionatore	
Pozzetto finale (acque	Qualità e	ed	BOD5, SO4, solfuri,	Medio composito	Una volta a settimana
reflue scaricate)	efficienza d	lel	fluoruri, TNI, MBAS, Cl,	su 24 ore con	
	processo		cianuri, fenoli, (oltre ai	autocampionatore	
			parametri di cui sopra)		
Pozzetto finale (acque	Qualità e	ed	pH, COD, SST, metalli	Medio prelevato	Trimestrale
reflue scaricate)	efficienza d	lel	(Crtot, Cr esavalente,	nell'arco di tre ore	
	processo		Ni, Pb, Cd, Cu, Zn),		
			NH4, Ntot, Test di		
			tossicità, conducibilità,		
			BOD5, solfati, nitrati,		
			nitriti, fluoruri, cloruri,		
			cianuri, fenoli, Al, As,		
			Hg, IPA, idrocarburi		
			totali, solventi organici		
			aromatici e solventi		
			clorurati, benzene,		
			tetracloruro di		
			carbonio.		

La qualità dello scarico è controllata dal laboratorio interno, per mezzo di:

- prelievi giornalieri per l'analisi di pH, conducibilità, SST, COD, Cd, Cromo totale, Ni, Pb, Cu, Zn, azoto totale, NH4, test di tossicità;
- prelievi settimanali per l'analisi di BOD5, CN, H2S, SO4, Cl, F-, fenoli, TNI, MBAS;
- prelievi trimestrali per l'analisi dei seguenti parametri Al, As, Hg, cromo VI, nitriti, nitrati, idrocarburi totali, solventi organici aromatici, solventi organici clorurati, IPA, benzene, oltre a quelli precedenti come da Piano di Monitoraggio e Controllo autorizzato.

Gli autocontrolli vengono effettuati durante il corso dell'anno, sia dal laboratorio di Acque SpA interno all'area del depuratore, sia da laboratori esterni.

Pag. 33 di 43

Sito di Pagnana via della Motta Empoli

Di seguito si riportano i risultati delle ultime analisi effettuate sugli scarichi idrici di Acque Industriali nel 2014.

Parametro	Unità di misura	Valore Medio	Numero determinazioni	Valore limite
Attività ione H+	рН	9,0	257 giornaliero	5,5-11*
Conducibilità	mS/cmq	4.621	257 giornaliero	
BOD_5	mg/l O2	969	54 settimanale	2250*
COD	mg/l O2	2.331	257 giornaliero	4500*
SST	mg/l	273	257 giornaliero	900*
Azoto Totale	mg/l	256	257 giornaliero	537*(-)
Ammoniaca	mg/l	247	257 giornaliero	**
Nitriti	mg/l	0,8	4	**
Nitrati	mg/l	4,9	4	**
Cadmio	mg/l	0,0	257	0,02
Cromo totale	mg/l	0,12	257	4
Cromo esavalente	mg/l	0,0	4	0,2
Nichel	mg/l	0,17	257	4
Piombo	mg/l	0,04	257	0,3
Rame	mg/l	0,04	257	0,4
Zinco	mg/l	0,17	257	1
Alluminio	mg/l	0,27	4	2
Arsenico	mg/l	0,15	4	0,5
Mercurio	mg/l	0,001	4	0,005
Idrocarburi Totali	mg/l	0,0	4	10
Solventi Organici Aromatici	mg/l	0,003	4	0,4
Solventi Organici Clorurati	mg/l	0,001	4	2
IPA	mg/l	13,5	4	
Benzene	mg/l	0,0	4	
Tensioattivi totali	mg/l	2,65	54	4
Fenoli	mg/l	0,37	54	1
Solfati	mg/l	244	54	1000
Fluoruri	mg/l	1,0	54	12
Cloruri	mg/l	1.617	54	2500*
Cianuri	mg/l	0,07	54	1
Solfuri	mg/l	0,14	54	2

^{*}valore in deroga così come previsto al punto 4.1.2 Scarichi Idrici dell'Allegato A dell'AIA n.40/2008

Tabella 388: Risultati analitici dei reflui in uscita dal depuratore di Pagnana nell'anno 2013 (Acque Industriali)

La tabella di seguito riporta l'indicatore riferito agli inquinanti principali monitorati per gli scarichi idrici della piattaforma gestita da Acque Industriali ovvero BOD, COD e SST.

	2012	2013	2014	Giugno 2015
mg BOD/t rifiuti liquidi trattati	0,75	1,18	1,08	0,82
mg COD/t rifiuti liquidi trattati	2,13	3,09	2,59	2,19
mg SST/t rifiuti liquidi trattati	0,25	0,32	0,30	0,27

Tabella 39: indicatore mg inquinante/m³ rifiuti liquidi in trattati (Acque Industriali)

^{(-) 748} mg/l concentrazione in deroga per Fase 3 - Regime **Ricompresi nell'azoto totale.

Sito di Pagnana via della Motta Empoli

L'indicatore mostra un andamento in incremento per gli inquinanti dal 2012 al 2013, per poi tornare a diminuire nel 2014, rispettivamente per il BOD del 9%, per il COD del 16% ed infine per i SST del 6% circa.

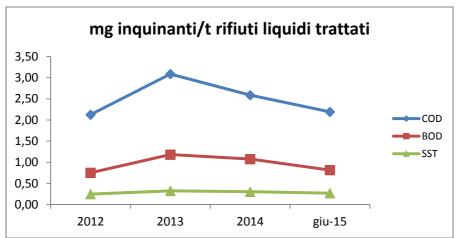


Grafico 9: mg inquinante/m³ rifiuti liquidi in trattati (Acque Industriali)

5.1.6. Rifiuti

Acque SpA

I fanghi derivanti dal processo di depurazione dei reflui fognari rappresentano per il 2014 circa il 98% del totale dei rifiuti prodotti da Acque SpA, che sono in genere non pericolosi. I rifiuti totali prodotti sono in diminuzione (circa il 9%) nell'ultimo biennio. La produzione di rifiuti pericolosi è soggetta a variazioni annuali dovute a smaltimenti occasionali come nel 2012, anno in cui c'è stata una produzione di rifiuti derivati da veicoli fuori uso.

Denominazione rifiuto	codice CER	2012 (kg)	2013 (kg)	2014 (kg)	Giugno 2015 (kg)
imballaggi in plastica	150102	1.990	\	\	\
imballaggi in materiali misti	150106	\	\	3.130	\
veicoli fuori uso	160104*	800	\	\	\
plastica	170203	580	\	\	\
ferro e acciaio	170405	\	\	3.560	\
terra e rocce, diverse da quelle di cui alla voce 17 05 03	170504	\	\	26.300	\
vaglio	190801	1.300	4520	3.640	870
rifiuti dell'eliminazione della sabbia	190802	115.490	96.950	\	\
fanghi prodotti dal trattamento delle acque reflue urbane	190805	3.551.080	2.487.910	2.306.840	1.608.360
rifiuti della pulizia delle fognature	200306	77.000	9.500	10.000	\
TOTALE		3.748.240	2.598.880	2.353.470	1.609.230

Tabella 39: Rifiuti prodotti (Acque SpA)

Gli imballaggi in plastica, prodotti nel 2012, si riferiscono ai sacchi contenenti polielettroliti, che sono stati sostituiti da taniche, trattati come vuoti a rendere, inoltre nel 2014 si è prodotto come rifiuto "terra e rocce da scavo" dovuti a manutenzioni edili sull'impianto. Infine, per quanto riguarda i "rifiuti dall'eliminazione della sabbia" questi derivano dallo smaltimento del letto di essiccamento delle vasche, nel 2014 e nel primo semestre 2015 non sono stati prodotti in quanto non è stata ancora effettuata la pulizia annuale delle vasche.

Di seguito si riporta l'indicatore sui rifiuti prodotti dal processo produttivo rapportati ai kg di BOD in ingresso che mostra un andamento crescente dal 2012 al 2013 e in diminuzione nell'ultimo biennio considerato.

Sito di Pagnana via della Motta Empoli

	2012	2013	2014	Giugno 2015
Kg rifiuti/kg BOD ingresso	2928,31	4674,24	4121,66	3100,64

Tabella 40: Indicatori sui rifiuti prodotti (Acque SpA)

Di seguito si riportano i rifiuti prodotti dal Laboratorio chimico presente sull'impianto, è importante considerare che nella tabella si considerano anche i rifiuti in deposito temporaneo.

Denominazione rifiuto	codice CER	2012 (kg)	2013 (kg)	2014 (kg)	Giugno 2015 (kg)
Sostanze chimiche di laboratorio contenenti o costituite da sostanze pericolose.	160506*	172	175	78	26
Sostanze chimiche di scarto non pericolose	160509	524,5	379,5	1.006,0	891

Tabella 412: Rifiuti di laboratorio (Acque SpA)

Oltre ai CER riportati nella tabella, nel laboratorio si producono anche i codici 160604 "Batterie Alcaline" e 150110 "Imballaggi contenenti residui di sostanze pericolose o contaminati da tali sostanze" ma nel periodo considerato non sono stati prodotti.

Rifiuti laboratorio	codice CER		2011 (kg)	2012 (kg)	2013 (kg)	2014 (kg)	gen-giu 2015 (kg)	deposito temporan eo gen-giu 2015
Sostanze chimiche di laborato da sostanze pericolose.	orio contenenti o costituite	160 5 06 *	204,5	172	75	78		26
Sostanze chimiche di scarto n	on pericolose	160509	510,3	524,5	379,5	1.006,0	891	-
Batterie acaline		160604						
Imballaggi contenenti residu contaminati da tali sostanze	i di sostanze pericolose o	150110 *						-

Acque Industriali srl

I rifiuti prodotti da Acque Industriali si riconducono per il 78% ai fanghi derivanti da trattamenti chimico-fisico, questi vengono depositati in appositi cassoni scarrabili a tenuta stagna prima del loro smaltimento in discarica. I rifiuti totali prodotti sono in diminuzione dal 2012 al 2013 di circa il 23%, per poi tornare ad aumentare nel 2014 (in linea con i valori del 2012). L'aumento del rifiuto prodotto nel 2014 potrebbe essere riconducibile ad un aumento della quantità di rifiuto in ingresso CER 190703 "Percolato di discarica", che viene trattato con un reattore ottenendo una quantità maggiore di fango. La normale attività dell'organizzazione non implica una produzione significativa di rifiuti pericolosi e quindi si riconducono solo a smaltimenti occasionali.

Denominazione rifiuto	codice CER	2012 (kg)	2013 (kg)	2014 (kg)	Giugno 2015 (kg)
Imballaggi in materiali misti	150106	-	770	390	-
Ferro e acciaio	170405	-	1.760	6.300	-
Fanghi prodotti da trattamenti chimico-fisici	190206	1.547.810	1.062.290	1.322.080	680.810
Vaglio	190801	120.310	232.770	318.750	134.520
Rifiuti dell'eliminazione della sabbia	190802	94.340	29.120	13.380	~
Rifiuti non specificati altrimenti (trattamento emissioni, filtrazioni GAC)	190899	-	-	3.020	-
Carbone attivo esaurito	190904	1.840	-	-	~

Pag. 36 di 43

Sito di Pagnana via della Motta Empoli

Denominazione rifiuto	codice CER	2012 (kg)	2013 (kg)	2014 (kg)	Giugno 2015 (kg)
Rifiuti dalla pulizia delle fognature	200306	11.000	37.930	83.090	56.070
TOTALE		1.775.300	1.364.640	1.747.010	871.400

Tabella 423: Rifiuti prodotti (Acque Industriali)

Per il 2013 e il 2014 si è prodotto il rifiuto 150106 dovuto ad imballaggi prodotti durante alcune opere di cantiere, la produzione nel 2014 del codice CER 190899 è dovuto allo smaltimento di carbone attivo del trattamento dell'aria e del finissaggio. Infine, a seguito della pulizia delle fognature interne all'impianto, tra il 2013 e l'inizio del 2014 c'è stato un incremento dei rifiuti classificati con codice CER 200306. L'indicatore dei rifiuti prodotti rispetto ai metri cubi di rifiuti liquidi trattati mostra una diminuzione dal 2012 al 2013 e un leggero incremento di circa il 14% nell'ultimo anno considerato.

	2012	2013	2014	Giugno 2015
Kg rifiuti/t rifiuti liquidi trattati	27,88	18,09	20,69	27,84

Tabella 43: Indicatori sui rifiuti prodotti (Acque Industriali)

5.1.7. Rumore

Nessuna variazione rispetto alla Dichiarazione Ambientale convalidata in data 29.12.2014

5.1.8. Altri aspetti ambientali diretti

Nella presente sezione si riportano gli aspetti ambientali per i quali non sono disponibili dati quantitativi per la costruzione degli indicatori oppure che non sono presenti o risultano trascurabili per il sito di Pagnana.

5.1.8.1. Odori

Nessuna variazione rispetto alla Dichiarazione Ambientale convalidata in data 29.12.2014

5.1.8.2. Suolo e sottosuolo

Nessuna variazione rispetto alla Dichiarazione Ambientale convalidata in data 29.12.2014

All'interno del sito sono presenti 3 piezometri di proprietà di Acque Industriali, ma che servono l'intero sito, attraverso i quali vengono effettuate analisi sulla falda sotterranea. Di seguito si riportano i risultati delle ultime analisi risalenti 15 Luglio 2015.

	Unità				
Parametro	di misura	Piezometro 1	Piezometro 2	Piezometro 3	LIMITI
Temperatura	°C	ND	ND	ND	-
Conducibilità (a 25°C)	μS/cm	1720	1390	1500	-
Cloruri	mg/L	273	181	187	~
Solfati	mg/L	126	81	137	2,50
Ammonio	mg/L	<0,05	<0,05	<0,05	0,5
Nitrati	mg/L	23	9,3	8,7	
Solfuri	mg/L	<0,10	<0,10	<0,10	
Alluminio	mg/L	<10,0	<10,0	<10,0	200
Arsenico	mg/L	<1,0	<1,0	<1,0	10
Cadmio	mg/L	<0,1	<0,1	<0,1	5
Cromo Totale	mg/L	<1,0	<1,0	<1,0	50
Mercurio	mg/L	<0,1	0,06	<0,1	1
Nichel	mg/L	<1,0	10,5	8,3	20
Piombo	mg/L	<1,0	<1,0	<1,0	10

Pag. 37 di 43

DICHIARAZIONE AMBIENTALE CONGIUNTA 2014-2017

AI SENSI DEL REGOLAMENTO EMAS III Sito di Pagnana via della Motta Empoli

	Unità		Risultato		
Parametro	di misura	Piezometro 1	Piezometro 2	Piezometro 3	LIMITI
Rame	mg/L	1,7	1,5	1,6	1000
Zinco	mg/L	<10,0	<10,0	<10,0	3000
Stagno	mg/L	<0,2	<0,2	<0,2	
Benzo(a)antracene	μg/L	<0,01	<0,01	<0,01	95
Benzo(a)pirene	μg/L	<0,001	<0,001	<0,001	95
Benzo(b)fluorante	μg/L	<0,005	<0,005	<0,005	95
Benzo(k)fluorante	μg/L	<0,50	<0,50	<0,50	95
Crisene	μg/L	<0,001	<0,001	<0,001	95
Dibenzo(a,h)antracene	μg/L	<0,01	<0,01	<0,01	95
Indeno (1,2,3- c,d)pirene	μg/L	<0,01	<0,01	<0,01	95
Pirene	μg/L	< 5	<5	< 5	95
Sommatoria IPA	μg/L	<0,01	<0,01	<0,01	95
Benzene	μg/L	<0,1	<0,1	<0,1	1
Etilbenzene	μg/L	< 5	< 5	< 5	50
Toluene	μg/L	<1,5	<1,5	<1,5	15
Meta, para-Xilene	μg/L	<1	<1	<1	10

Tabella 44: Risultati analisi acque sotterranee (Luglio 2015)

5.1.8.3. PCB

Nessuna variazione rispetto alla Dichiarazione Ambientale convalidata in data 29.12.2014

5.1.8.4. Amianto

Nessuna variazione rispetto alla Dichiarazione Ambientale convalidata in data 29.12.2014

5.1.8.5. Impatto visivo

Nessuna variazione rispetto alla Dichiarazione Ambientale convalidata in data 29.12.2014

5.1.8.6. Inquinamento elettromagnetico

Nessuna variazione rispetto alla Dichiarazione Ambientale convalidata in data 29.12.2014

5.1.8.7. Trasporto

Nessuna variazione rispetto alla Dichiarazione Ambientale convalidata in data 29.12.2014

5.1.8.8. Biodiversità

Nessuna variazione rispetto alla Dichiarazione Ambientale convalidata in data 29.12.2014

5.2. Significatività degli aspetti ambientali diretti

Nessuna variazione rispetto alla Dichiarazione Ambientale convalidata in data 29.12.2014

Si riporta di seguito la valutazione di significatività per le due organizzazioni.

Acque SpA					
Aspetto ambientale	Condizioni normali	Condizioni anomale	Condizioni di emergenza		
Consumi idrici	1,6				
Scarichi idrici	2,4	2,30	1,13		
Consumi energetici	1,8	1,80	0,50		
Consumi materie prime	1,2				
Emissioni in atmosfera	1,8		0,75		

Pag. 38 di 43

Sito di Pagnana via della Motta Empoli

Rifiuti 1,9 1,90 0,50 Rumore 1,6 1,40 0,50 Odori 1,2 1,30 0,25 Suolo e sottosuolo 1 0,25

Tabella 46: Valutazione aspetti diretti Acque SpA

La tabella riportata di seguito mostra la significatività degli aspetti ambientali diretti di Acque Industriali.

Acque Industriali					
Aspetto ambientale	Condizioni normali	Condizioni anomale	Condizioni di emergenza		
Consumi idrici	1,6				
Scarichi idrici	2,2	1,90	0,94		
Consumi energetici	1,4	1,80	0,50		
Consumi materie prime	1,6				
Emissioni in atmosfera	1,8		0,75		
Rifiuti	1,9	2,00	0,50		
Rumore	1,6	1,40	0,50		
Odori	1,2	1,00	0,25		
Suolo e sottosuolo	1		0,75		

Tabella 47: Valutazione aspetti diretti Acque Industriali

5.3. Aspetti ambientali indiretti

Nessuna variazione rispetto alla Dichiarazione Ambientale convalidata in data 29.12.2014

6. IL SISTEMA DI GESTIONE AMBIENTALE DELLE ORGANIZZAZIONI

Acque SpA, affidataria del servizio idrico integrato e le sue Società controllate hanno implementato un sistema di gestione integrato ed infragruppo qualità, sicurezza, ambiente, responsabilità sociale e risparmio energetico che mira alla realizzazione di un modello di governance multi approccio tale da anticipare le esigenze espresse e inespresse degli stakeholders. Il gruppo Acque ispira la propria gestione a criteri di trasparenza, di efficienza e responsabilità, e mira a realizzare i propri obiettivi d'impresa, nell'ambito del rispetto delle finalità sociali ed ambientali definite d'intesa con gli enti locali di riferimento, impegnandosi in particolare a salvaguardare l'ambiente circostante ed a contribuire allo sviluppo sostenibile del territorio. Le linee strategiche del Gruppo, sono sviluppate prendendo come punto di riferimento gli assunti della mission stessa. I suddetti obiettivi sono perseguiti attraverso il mantenimento ed evoluzione del Sistema di gestione integrato infragruppo, questo crea un vero e proprio sodalizio tra tutti gli attori diretti ed indiretti e fa in modo che tutte le parti interessate possano partecipare al miglioramento delle prestazioni qualitative, ambientali di sicurezza e di responsabilità sociale.

CERTIFICAZIONE CONSEGUITA	NORMA DI RIFERIMENTO	ANNO DI CONSEGUIMENTO ACQUE SPA	ANNO DI CONSEGUIMENTO ACQUE INDUSTRIALI
Sistema di gestione della qualità	UNI EN ISO 9001	2005	2004
Sistema di gestione ambientale	UNI EN ISO 14001	2005	2007
Sistema di gestione della salute e sicurezza dei lavoratori	OHSAS 18001	2005	2007
Sistema di gestione della responsabilità sociale	SA8000	2007	2007

Pag. 39 di 43

Sito di Pagnana via della Motta Empoli

Sistema di gestione dell'energia	UNI EN ISO 50001	2013	-
Accreditamento dei laboratori di Pontedera, Empoli e Pisa	ISO/IEC 17025	2015	-

Tabella 45: certificazioni in vigore

La tutela ambientale, nonostante abbia un peso rilevante nell'ambito della gestione aziendale, è ormai considerata come appartenente all'ordinaria gestione etica dell'impresa, dalla quale un'azienda socialmente responsabile non può in alcun modo prescindere. Acque continua a mantenere – su tutto il territorio coperto – la certificazione del sistema di gestione ambientale ISO 14001. Per quanto riguarda la gestione della sicurezza si riportano di seguito gli estremi dei CPI di cui sono in possesso le due organizzazioni. Acque SpA è in possesso di Certificato di Prevenzione Incendi, rinnovato regolarmente nel 2011, pratica SUAP 1424/2011. Sono soggetti a CPI:

- l'impianto di produzione, trasporto, stoccaggio gas biologico
- caldaia con bruciatore di potenzialità 350 kW alimentato a gas metano
- serbatoio fuori terra contenete 300 metri cubi di gas biologico

All'interno dello stabilimento dal 2011 a giugno 2015 non si sono mai verificati incidenti o infortuni sul lavoro.

Per la piattaforma sotto la gestione di Acque Industriali si evidenzia che è presente regolare Certificato di Prevenzione Incendi n. 26245 del 24/Il/2010 per l'attività di "centrale termica", attività individuata nella categoria A al punto 74.1.A dell'allegato I al D.P.R.151/2011. La tabella seguente mostra la situazione degli incidenti e degli infortuni occorsi sul sito di Pagnana nel periodo 2011 – settembre 2014. Come specificato nel 2011 è avvenuto un infortunio che si è protratto per il 2012 ed ha comportato 266 giorni di malattia.

	2012	2013	2014	Giugno 2015
N. totale di incidenti	2 + *	0	0	0
Giornate totali infortunio	17	0	0	0
Indice di frequenza	148,81	0	0	0
Indice di gravità	18,8	0	0	0

^{*} A questi dobbiamo sommare un infortunio avvenuto nel 2011 ma terminato nel 2012 di 266 giorni. Tabella 46: infortuni sul lavoro 2012-giugno 2015 (Acque Industriali)

Gli indici riportati in tabella sono previsti dalla norma UNI 7249 "statistiche degli indici di infortuni". L'indice di frequenza (n. di infortuni *1.000.000/n. ore lavorate nell'anno), fornisce il numero di infortuni avvenuti ogni milione di ore lavorate. L'incidente avvenuto nel 2011 e protrattosi nel 2012 è stato conteggiato nell'indice per il 2011. L'indice di gravità (n. di giorni di inabilità temporanea *1.000/n. ore lavorate nell'anno) rappresenta il numero di giornate mediamente perdute da ogni addetto a causa degli infortuni. Le giornate di inabilità temporanee scaturite dall'incidente avvenuto tra il 2011 e il 2012 sono state tutte conteggiate per l'indice riferito al 2012.

7. I PROGRAMMI AMBIENTALI DELLE ORGANIZZAZIONI

N	Obiettivo	Indicatore	Azienda/Resp	scadenza	Risorse (€)
1	Automazione dei processi per un migliore controllo dei rendimenti depurativi e la qualità delle acque di scarico	% di abbattimento minimo Ntot 74,6 % Ptot 85,3% (<u>+</u> 5%)	Acque SpA	31/12/2015	50.000
1bis	Automazione dei processi di digestione volti al contenimento del volume dei fanghi da smaltire	Aumento del tempo medio di mineralizzazione del fango del 30% dal valore attuale	Acque SpA	31/12/2015	50.000
2	Mantenimento del sistema di gestione implementato secondo la norma UNI CEI EN ISO 50001 e riduzione dei consumi energetici	Funzione obbiettivo sezione ossidazione, rispetto alla funzione baseline kWh/mese =201,86*(kg O ₂ /mese) + 65.619, kWh/mese =160(±8%)*(kg O ₂ /mese) + 65.619,	Acque SpA	31/12/2017	

Pag. 40 di 43

N	Obiettivo	Indicatore	Azienda/Resp	scadenza	Risorse (€)
3	Dosaggio prodotti coadiuvanti per la riduzione dei nutrienti (N e P) Vedi: Delibera regionale.	% di abbattimento minimo Ntot 74,6 % Ptot 85,3% (±5%)	Acque SpA	31/12/2015	50.000
4	Studio per la sostituzione di reagenti impattanti con reagenti sostenibili in particolare riduzione dei quantitativi a parità di carico in ingresso e rendimento di abbattimento di: Prodotti di consumo coagulante Prodotti di consumo di substrato	Sperimentazione da gennaio ad agosto 2015 Valutazione della fattibilità a settembre con relativa redazione del piano di nuova implementazione	Acque SpA	31/12/2015	5.000
5	Realizzazione copertura cassoni scarrabili fanghi zona linea 1	Riduzione di almeno 30t/anno	Acque Industriali	31/12/2015	45.000
6	Copertura zona scarico reagenti e rifiuti linea 2 (zona pipe rack)	na	Acque Industriali	31/12/2014	7.500 Obiettivo raggiunto Speso 10.000
7	Ripristino pavimento sconnesso linea 1	na	Acque Industriali	30/6/2015	6.000
8	Implementazione sistema di gestione secondo la norma UNI CEI EN ISO 50001 per la riduzione dei consumi energetici	Riduzione del 5%	Acque Industriali	31/12/2015	6.000
9	Studio sulla Carbon Footprint 14067-14064 di sito	Implementazione specifica del sito di Pagnana rispetto allo studio generale effettuato sul ciclo di Acque Spa.	Acque SpA Acque Industriali	31/12/2017	20.000
10	Sezione Stripper – sostituzione scambiatore –	Risparmio Atteso: 6.000 Nmc gas/anno metano (c.ca 10%)	Acque Industriali	30/03/2017	15.000
11	Sezione Trattamento aria – sostituzione motore ventilatore	Risparmio Atteso: 2.217 kWh anno	Acque Industriali	30/03/2016	1.200
12	Installazione 7 nuovi Energy Meter per un completo monitoraggio energetico di tutte le sezioni impiantistiche della Piattaforma Industriale	Risparmio Atteso: kWh anno	Acque Industriali	31/12/2015	10.000
13*	Installazione nuovi portelloni in zona disidratazione fanghi linea 1per l'abbattimento dell'impatto acustico	Riduzione del 5%	Acque Industriali	31/12/2016	20.000
14*	Copertura cassoni zona fanghi	Riduzione impatto sversamento	Acque Industriali	31/12/2016	45.000
15*	Analisi di impatto acustico congiunta di sito post intervento n. 13	Visione di sito abbattimento da intervento n. 13	Acque Industriali Acque Spa	31/12/2016	2.000

Note al piano

*obiettivo nuovo 6 obiettivo raggiunto

8. GLOSSARIO

Aspetto Ambientale: qualsiasi "elemento di un'attività, prodotto o servizio di un'organizzazione che può interagire con l'ambiente".

Audit: strumento di gestione comprendente una valutazione sistematica, documentata, periodica e obiettiva dell'efficienza dell'organizzazione, del sistema di gestione e dei processi destinati alla protezione dell'ambiente, al fine di:

- facilitare il controllo di gestione delle prassi che possono avere un impatto sull'ambiente;
- valutare la conformità alle politiche ambientali aziendali.

BOD: Biological Oxygen Demand - Richiesta Biochimica di Ossigeno. Misura la richiesta biologica di ossigeno ovvero la quantità di ossigeno consumato, durante alcuni processi di ossidazione di sostanza organica in 5 giorni.

COD: Chemical Oxygen Demand – Richiesta Chimica di Ossigeno. Il COD rappresenta la quantità di ossigeno necessaria per la completa ossidazione per via chimica dei composti organici ed inorganici presenti in un campione di acqua

SST: Solidi Sospesi Totali - si intendono tutte quelle sostanze indisciolte, presenti nel campione di acqua da esaminare, che vengono trattenute da un filtro a membrana, di determinata porosità, quando il campione stesso viene sottoposto a filtrazione.

 CO_2 : simbologia chimica per indicare l'anidride carbonica, gas incolore, inodore e insapore, più pesante dell'aria, che si forma in tutti i processi di combustione, respirazione, decomposizione del materiale organico, per ossidazione del carbonio. L'aumento di concentrazione di anidride carbonica in atmosfera determina nel tempo modifiche del clima.

Dichiarazione Ambientale: documento destinato al pubblico in cui l'organizzazione che aderisce al Regolamento EMAS divulga le informazioni riguardanti le proprie attività e i propri impatti ambientali e presenta il proprio sistema di gestione ambientale. Le informazioni contenute sono quelle richieste nell'allegato IV del Regolamento Europeo 1221/2009 "EMAS".

EMAS: Eco Management and Audit Scheme; indica il Regolamento CE n. 1221/2009 sull'adesione volontaria delle imprese a un sistema comunitario di ecogestione e audit.

Impatti ambientali: qualsiasi modifica dell'ambiente, negativa o benefica, totale o parziale, conseguente ad attività, prodotti o servizi di un'organizzazione.

Miglioramento continuo: Processo di accrescimento del sistema di gestione ambientale per ottenere miglioramenti della prestazione ambientale complessiva in accordo con la Politica Ambientale dell'organizzazione.

PCB-PCT: Policlorobifenili - Policlorotrifenili

Politica ambientale: documento, approvato dalla Direzione, contenente gli obiettivi ed i principi di azione dell'impresa riguardo l'ambiente ivi compresa la conformità alle pertinenti disposizioni regolamentari.

Programma ambientale: descrizione delle misure (responsabilità, tempi e mezzi) adottate o previste per raggiungere obiettivi e target ambientali e relative scadenze.

Significatività: risultato in termini di criticità del processo di valutazione degli aspetti ambientali identificati all'interno dell'organizzazione (secondo una specifica metodologia definita da parte dell'organizzazione stessa)

Sistema di Gestione Ambientale: la parte del sistema di gestione complessivo comprendente la struttura organizzativa, la responsabilità, le prassi, le procedure, i processi e le risorse per definire e attuare la politica ambientale.

Sito: tutto il terreno, in una zona geografica precisa, sotto il controllo gestionale di una organizzazione che comprende attività, prodotti e servizi. Esso include qualsiasi infrastruttura, impianto e materiale.

Verificatore Accreditato: qualsiasi persona o organismo indipendente dall'organizzazione oggetto di verifica che abbia ottenuto un accreditamento in conformità delle condizioni e procedure dell'articolo 4 del Regolamento CE n. 1221/2009 "EMAS III".

Pag. 42 di 43

Il Verificatore Ambientale accreditato che ha verificato e convalidato questa Dichiarazione Ambientale di Acque SpA e Acque Industriali Srl, ai sensi del Regolamento CE n. 1221/2009 (EMAS) del 25 Novembre 2009 è:

RINA Services S.p.A. Gruppo Registro Italiano Navale Via Corsica 12 – 16128 Genova IT-V-0002

Acque SpA e Acque Industriali Srl si impegnano a trasmettere all'Organismo Competente a Roma il presente aggiornamento della Dichiarazione Ambientale, il successivo aggiornamento annuale e la revisione completa del documento a tre anni dalla data di convalida e a mettere a disposizione del pubblico sia la Dichiarazione Ambientale sia gli aggiornamenti annuali, secondo quanto previsto dal Regolamento CE 1221/2009 (EMAS III).